(New page: Since <math>e^{2jt} \rightarrow system \rightarrow te^{-2jt}\!</math><br> <math>e^{-2jt} \rightarrow system \rightarrow te^{2jt}\!</math><br>)
 
 
(14 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<math>e^{2jt} \rightarrow system \rightarrow te^{-2jt}\!</math><br>
 
<math>e^{2jt} \rightarrow system \rightarrow te^{-2jt}\!</math><br>
 
<math>e^{-2jt} \rightarrow system \rightarrow te^{2jt}\!</math><br>
 
<math>e^{-2jt} \rightarrow system \rightarrow te^{2jt}\!</math><br>
 +
<br>
 +
and using euler formula, we can replace exponent expressions with
 +
 +
Euler's formula: <math>e^{iy}=cos(y)+isin(y)\,</math><br>
 +
<br>
 +
<br>
 +
They will change into:<br>
 +
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br>
 +
<math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br><br>
 +
 +
It indicates that the system changes the expression on the middle of cos and sin.
 +
While cos(2t) function can be found with this equation:
 +
<br>
 +
<math>\frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} =</math><br><math> \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) = cos{(2t)}</math><br><br>
 +
|<br>
 +
|<br>
 +
|<br>
 +
V<br><br>
 +
<math>System \,</math><br><br>
 +
|<br>
 +
|<br>
 +
|<br>
 +
V<br>
 +
<br>
 +
<math>\frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos(2t)</math><br>
 +
<br>

Latest revision as of 10:39, 16 September 2008

Since $ e^{2jt} \rightarrow system \rightarrow te^{-2jt}\! $
$ e^{-2jt} \rightarrow system \rightarrow te^{2jt}\! $

and using euler formula, we can replace exponent expressions with

Euler's formula: $ e^{iy}=cos(y)+isin(y)\, $


They will change into:
$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\, $

It indicates that the system changes the expression on the middle of cos and sin. While cos(2t) function can be found with this equation:
$ \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} = $
$ \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) = cos{(2t)} $

|
|
|
V

$ System \, $

|
|
|
V

$ \frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos(2t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett