Line 19: Line 19:
 
and "conveniently":
 
and "conveniently":
  
<math>e^{2jt} \; + \; e^{-2jt} = \cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(-2t)} \; + \; j \sin{(-2t)}</math> <font size="4">(by Euler's Formula)</font>
+
<math>e^{2jt} \; + \; e^{-2jt} = \cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(-2t)} \; + \; j \sin{(-2t)}</math> &nbsp; <font size="4">(by Euler's Formula)</font>
  
 
<math>=\cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(2t)} \; - \; j \sin{(2t)}</math> (<math>\cos{(-x)}=\cos{(x)}</math> and <math>\sin{(-x)}=-\sin{(x)}</math>)
 
<math>=\cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(2t)} \; - \; j \sin{(2t)}</math> (<math>\cos{(-x)}=\cos{(x)}</math> and <math>\sin{(-x)}=-\sin{(x)}</math>)

Revision as of 21:32, 16 September 2008

Problem

A linear system’s response to $ e^{2jt} $ is $ te^{-2jt} $, and its response to $ e^{-2jt} $ is $ te^{2jt} $. What is the system’s response to $ cos(2t) $?

Solution

If the system is linear, then the following is true:

For any $ x_{1}(t) \; \rightarrow \; y_{1}(t) $ and $ x_{2}(t) \; \rightarrow \; y_{2}(t) $

and any complex constants $ a $ and $ b $


then


$ ax_{1}(t) \; + \; bx_{2}(t) \; \rightarrow \; ay_{1}(t) \; + \; by_{2}(t) $


and "conveniently":

$ e^{2jt} \; + \; e^{-2jt} = \cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(-2t)} \; + \; j \sin{(-2t)} $   (by Euler's Formula)

$ =\cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(2t)} \; - \; j \sin{(2t)} $ ($ \cos{(-x)}=\cos{(x)} $ and $ \sin{(-x)}=-\sin{(x)} $)

$ =2\cos{(2t)} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn