(9 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
Based on the above,
 
Based on the above,
<math>x(t)=cos(2t)</math> would yield <math>y(t)=tx(-t)=tcos(-2t)</math>.
+
<math>x(t)=cos(2t)</math> would yield <math>y(t)=tx(-t)=tcos(-2t)=tcos(2t)</math>.
  
 
----
 
----
 
The above solution works for this case, but it does not show the properties of linearity.
 
The above solution works for this case, but it does not show the properties of linearity.
  
If <math>x_1(t)=e^{2jt)</math> and <math>x_2(t)=e^{-2jt)</math>,
+
If <math>x_1(t)=e^{2jt}</math> and <math>x_2(t)=e^{-2jt}</math>,
Take the input signal to be <math>\frac{1,2}(x_1(t)+x_2(t)}</math>.  
+
Take the input signal to be <math>\frac{1}{2}(x_1(t)+x_2(t))</math>.  
The response to the input is <math>y(t)=\frac{1.2}y_1(t)+\frac{1,2}y_2(t)</math> because the system is linear.
+
The response to the input is <math>y(t)=\frac{1}{2}y_1(t)+\frac{1}{2}y_2(t)</math> because the system is linear.
  
<math>\frac{1,2}e^{2jt)+\frac{1,2}e^{-2jt}\rightarrowsystem\rightarrow\t(frac{1,2}e^{-2jt)+\frac{1,2}e^{2jt})</math>
+
<math>\frac{1}{2}(e^{2jt}+e^{-2jt})\rightarrow system\rightarrow t(\frac{1}{2}e^{-2jt}+\frac{1}{2}e^{2jt})</math>
  
<math>t(frac{1,2}e^{-2jt)+\frac{1,2}e^{2jt})=t(/frac{1,2}(e^{-2jt)+e^{2jt})</</math>
+
<math>=t(\frac{1}{2}(e^{-2jt}+e^{2jt})</math>
 
+
<math>=t(\frac{1}{2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t))</math>
                            <math>=t(/frac{1,2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t))</math>
+
<math>=t(\frac{1}{2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t))</math>
 
+
<math>=t(\frac{1}{2}(2cos(2t))</math>
                            <math>=t(/frac{1,2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t))</math>
+
<math>=tcos(2t)</math>
     
+
                            <math>=t(/frac{1,2}(2cos(2t))</math>
+
 
+
                            <math>=tcos(2t)</math>
+

Latest revision as of 11:05, 18 September 2008

since $ x(t)=e^{2jt} $ yields $ y(t)=te^{-2jt} $ and $ x(t)=e^{-2jt} $ yields $ x(t)=te^{2jt} $, it is easy to see that x(t) yields y(t)=t*x(-t).

Based on the above, $ x(t)=cos(2t) $ would yield $ y(t)=tx(-t)=tcos(-2t)=tcos(2t) $.


The above solution works for this case, but it does not show the properties of linearity.

If $ x_1(t)=e^{2jt} $ and $ x_2(t)=e^{-2jt} $, Take the input signal to be $ \frac{1}{2}(x_1(t)+x_2(t)) $. The response to the input is $ y(t)=\frac{1}{2}y_1(t)+\frac{1}{2}y_2(t) $ because the system is linear.

$ \frac{1}{2}(e^{2jt}+e^{-2jt})\rightarrow system\rightarrow t(\frac{1}{2}e^{-2jt}+\frac{1}{2}e^{2jt}) $

$ =t(\frac{1}{2}(e^{-2jt}+e^{2jt}) $ $ =t(\frac{1}{2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t)) $ $ =t(\frac{1}{2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t)) $ $ =t(\frac{1}{2}(2cos(2t)) $ $ =tcos(2t) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood