(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Part B: The basics of linearity==
 
==Part B: The basics of linearity==
  
<math>e^{2jt} \rightarrow linear-system \rightarrow te^{-2jt} </math>
+
<math>x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} </math>
  
<math>e^{-2jt} \rightarrow linear-system \rightarrow te^{2jt} </math>
+
<math>x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} </math>
  
From these two transformations we can tell that the system is as below:
+
The input, <math>cos(2t) = \frac{1}{2}(e^{j2t} + e^{-j2t})</math>
  
<math>x(t) \rightarrow linear-system \rightarrow y(t) = tx(-t)</math>
+
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>,
 +
where <math>a = b = \frac{1}{2}</math>
  
Therefore, when the input, x(t) = cos(2t), the output is as follows:  
+
The response to cos(2t) is:
  
<math>cost(2t) \rightarrow linear-system \rightarrow y(t) = tcos(-2t)</math>
+
<math>y(t) = \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math>
 +
 
 +
<math>y(t) = t[\frac{1}{2}(e^{-2jt}+e^{2jt})]</math>
 +
 
 +
<math>y(t) = tcos(2t)</math>
 +
 
 +
Therefore, <math>x(t) = cos(2t) \rightarrow linear-system \rightarrow y(t) = tcos(2t) </math>

Latest revision as of 09:15, 18 September 2008

Part B: The basics of linearity

$ x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} $

$ x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} $

The input, $ cos(2t) = \frac{1}{2}(e^{j2t} + e^{-j2t}) $

From the properties of a linear system $ ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t) $, where $ a = b = \frac{1}{2} $

The response to cos(2t) is:

$ y(t) = \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt} $

$ y(t) = t[\frac{1}{2}(e^{-2jt}+e^{2jt})] $

$ y(t) = tcos(2t) $

Therefore, $ x(t) = cos(2t) \rightarrow linear-system \rightarrow y(t) = tcos(2t) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett