Line 5: Line 5:
 
<math>x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} </math>
 
<math>x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} </math>
  
The input, cos(2t) is equal to <math>\frac{1}{2}(e^{j2t} + e^{-j2t})</math>
+
The input, <math>cos(2t) = \frac{1}{2}(e^{j2t} + e^{-j2t})</math>
  
 
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>,  
 
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>,  

Revision as of 09:13, 18 September 2008

Part B: The basics of linearity

$ x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} $

$ x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} $

The input, $ cos(2t) = \frac{1}{2}(e^{j2t} + e^{-j2t}) $

From the properties of a linear system $ ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t) $, where $ a = b = \frac{1}{2} $

The response to cos(2t) is:

$ y(t) = \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt} $ $ y(t) = t[\frac{1}{2}(e^{-2jt}+e^{2jt})] $ $ y(t) = tcos(2t) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang