(Formal Definition of a Stable System)
Line 2: Line 2:
 
A system is called stable if for any bounded input <math>\,x(t)\,</math>
 
A system is called stable if for any bounded input <math>\,x(t)\,</math>
  
<math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in\mathbb{R}\,</math>
+
( <math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in\mathbb{R}\,</math> )
 +
 
  
 
yields a bounded output <math>\,y(t)\,</math>.
 
yields a bounded output <math>\,y(t)\,</math>.
  
<math>\,\exists \delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math>
+
( <math>\,\exists \delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> )
  
 
== Formal Definition of an Unstable System ==
 
== Formal Definition of an Unstable System ==
 +
 +
A system is called unstable if there exists a bounded input <math>\,x(t)\,</math>
 +
 +
( <math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in\mathbb{R}\,</math> )
 +
 +
 +
that yields a unbounded output <math>\,y(t)\,</math>.
 +
 +
( there is no <math>\,\delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> )

Revision as of 15:53, 17 September 2008

Formal Definition of a Stable System

A system is called stable if for any bounded input $ \,x(t)\, $

( $ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in\mathbb{R}\, $ )


yields a bounded output $ \,y(t)\, $.

( $ \,\exists \delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $ )

Formal Definition of an Unstable System

A system is called unstable if there exists a bounded input $ \,x(t)\, $

( $ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in\mathbb{R}\, $ )


that yields a unbounded output $ \,y(t)\, $.

( there is no $ \,\delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $ )

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn