(New page: = Homework 2 Solutions = == Question 1 == a) <math class = "inline"> E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} |e^{-t}u(t)|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-...)
 
Line 2: Line 2:
  
 
== Question 1 ==
 
== Question 1 ==
a) <math class = "inline">  
+
a)  
E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} |e^{-t}u(t)|^2dt
+
<math class = "inline">  
 +
E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt
 
= \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2}
 
= \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2}
</math><br>
+
</math><br><br>
<math class = "inline">
+
<math class = "inline">  
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} |e^{-t}u(t)|^2dt
+
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt
 
= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right]
 
= \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right]
 
= \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0  
 
= \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0  
</math>
+
</math><br><br>
 +
 
 +
Since the signal has '''finite energy''', then we expect that it has '''zero average power'''.<br><br>
 +
b)
 +
<math class = "inline">
 +
E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt
 +
= \lim_{T \rightarrow \infty} \int_{0}^{T} dt
 +
= \lim_{T \rightarrow \infty} T
 +
= \infty
 +
</math><br><br>
 +
<math class = "inline">
 +
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt
 +
= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} dt
 +
= \lim_{T \rightarrow \infty} \frac{T}{2T}
 +
= \frac{1}{2}
 +
</math><br><br>
 +
Since the signal has '''infinite energy''', then we expect that it has '''average power that is greater than zero'''.<br><br>
 +
c)
 +
<math class = "inline">
 +
E_\infty = \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2
 +
= \lim_{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{9}
 +
= \lim_{N \rightarrow \infty} \frac{1}{9}(N+1)
 +
= \infty
 +
</math><br><br>
 +
<math class = "inline">
 +
P_\infty = \lim_{N \rightarrow \infty} \frac{1}{2N+1}\sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2
 +
= \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=0}^{N} \frac{1}{9}
 +
= \lim_{N \rightarrow \infty} \frac{1}{9} \cdot \frac{N+1}{2N+1}
 +
= \frac{1}{9} \cdot \frac{1}{2}
 +
= \frac{1}{18}
 +
</math><br><br>
 +
 
 +
== Question 2 ==
 +
a)
 +
<math class = "inline">
 +
x[n+N] = e^{j\frac{3}{5}\pi(n+N-1/2)}
 +
= e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)}
 +
</math><br><br>
 +
For <math>x[n+N]</math> to be equal to <math>x[n]</math>, <math class="inline">e^{j\frac{3}{5}\pi N}</math> should be equal to one.<br><br>
 +
This implies that <math class="inline">3\pi N/5 = 2\pi K</math>, where <math>k</math> is an integer, or <math> N=10k/3</math>. Now, the smallest integer N that is not zero is 10. Then the fundamental period of this signal is 10.<br><br>
  
Since the signal has finite energy, then we expect that it has zero average power.<br>
 
 
b)
 
b)

Revision as of 06:18, 2 February 2011

Homework 2 Solutions

Question 1

a) $ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2} $

$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right] = \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0 $

Since the signal has finite energy, then we expect that it has zero average power.

b) $ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} dt = \lim_{T \rightarrow \infty} T = \infty $

$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} dt = \lim_{T \rightarrow \infty} \frac{T}{2T} = \frac{1}{2} $

Since the signal has infinite energy, then we expect that it has average power that is greater than zero.

c) $ E_\infty = \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2 = \lim_{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{9} = \lim_{N \rightarrow \infty} \frac{1}{9}(N+1) = \infty $

$ P_\infty = \lim_{N \rightarrow \infty} \frac{1}{2N+1}\sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2 = \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=0}^{N} \frac{1}{9} = \lim_{N \rightarrow \infty} \frac{1}{9} \cdot \frac{N+1}{2N+1} = \frac{1}{9} \cdot \frac{1}{2} = \frac{1}{18} $

Question 2

a) $ x[n+N] = e^{j\frac{3}{5}\pi(n+N-1/2)} = e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)} $

For $ x[n+N] $ to be equal to $ x[n] $, $ e^{j\frac{3}{5}\pi N} $ should be equal to one.

This implies that $ 3\pi N/5 = 2\pi K $, where $ k $ is an integer, or $ N=10k/3 $. Now, the smallest integer N that is not zero is 10. Then the fundamental period of this signal is 10.

b)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva