(New page: = Homework 2 Solutions = == Question 1 == a) <math class = "inline"> E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} |e^{-t}u(t)|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-...)
 
Line 2: Line 2:
  
 
== Question 1 ==
 
== Question 1 ==
a) <math class = "inline">  
+
a)  
E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} |e^{-t}u(t)|^2dt
+
<math class = "inline">  
 +
E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt
 
= \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2}
 
= \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2}
</math><br>
+
</math><br><br>
<math class = "inline">
+
<math class = "inline">  
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} |e^{-t}u(t)|^2dt
+
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt
 
= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt
 
= \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right]
 
= \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right]
 
= \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0  
 
= \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0  
</math>
+
</math><br><br>
 +
 
 +
Since the signal has '''finite energy''', then we expect that it has '''zero average power'''.<br><br>
 +
b)
 +
<math class = "inline">
 +
E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt
 +
= \lim_{T \rightarrow \infty} \int_{0}^{T} dt
 +
= \lim_{T \rightarrow \infty} T
 +
= \infty
 +
</math><br><br>
 +
<math class = "inline">
 +
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt
 +
= \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} dt
 +
= \lim_{T \rightarrow \infty} \frac{T}{2T}
 +
= \frac{1}{2}
 +
</math><br><br>
 +
Since the signal has '''infinite energy''', then we expect that it has '''average power that is greater than zero'''.<br><br>
 +
c)
 +
<math class = "inline">
 +
E_\infty = \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2
 +
= \lim_{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{9}
 +
= \lim_{N \rightarrow \infty} \frac{1}{9}(N+1)
 +
= \infty
 +
</math><br><br>
 +
<math class = "inline">
 +
P_\infty = \lim_{N \rightarrow \infty} \frac{1}{2N+1}\sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2
 +
= \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=0}^{N} \frac{1}{9}
 +
= \lim_{N \rightarrow \infty} \frac{1}{9} \cdot \frac{N+1}{2N+1}
 +
= \frac{1}{9} \cdot \frac{1}{2}
 +
= \frac{1}{18}
 +
</math><br><br>
 +
 
 +
== Question 2 ==
 +
a)
 +
<math class = "inline">
 +
x[n+N] = e^{j\frac{3}{5}\pi(n+N-1/2)}
 +
= e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)}
 +
</math><br><br>
 +
For <math>x[n+N]</math> to be equal to <math>x[n]</math>, <math class="inline">e^{j\frac{3}{5}\pi N}</math> should be equal to one.<br><br>
 +
This implies that <math class="inline">3\pi N/5 = 2\pi K</math>, where <math>k</math> is an integer, or <math> N=10k/3</math>. Now, the smallest integer N that is not zero is 10. Then the fundamental period of this signal is 10.<br><br>
  
Since the signal has finite energy, then we expect that it has zero average power.<br>
 
 
b)
 
b)

Revision as of 06:18, 2 February 2011

Homework 2 Solutions

Question 1

a) $ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2} $

$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right] = \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0 $

Since the signal has finite energy, then we expect that it has zero average power.

b) $ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} dt = \lim_{T \rightarrow \infty} T = \infty $

$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} dt = \lim_{T \rightarrow \infty} \frac{T}{2T} = \frac{1}{2} $

Since the signal has infinite energy, then we expect that it has average power that is greater than zero.

c) $ E_\infty = \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2 = \lim_{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{9} = \lim_{N \rightarrow \infty} \frac{1}{9}(N+1) = \infty $

$ P_\infty = \lim_{N \rightarrow \infty} \frac{1}{2N+1}\sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2 = \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=0}^{N} \frac{1}{9} = \lim_{N \rightarrow \infty} \frac{1}{9} \cdot \frac{N+1}{2N+1} = \frac{1}{9} \cdot \frac{1}{2} = \frac{1}{18} $

Question 2

a) $ x[n+N] = e^{j\frac{3}{5}\pi(n+N-1/2)} = e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)} $

For $ x[n+N] $ to be equal to $ x[n] $, $ e^{j\frac{3}{5}\pi N} $ should be equal to one.

This implies that $ 3\pi N/5 = 2\pi K $, where $ k $ is an integer, or $ N=10k/3 $. Now, the smallest integer N that is not zero is 10. Then the fundamental period of this signal is 10.

b)

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett