(Part A)
(Part A)
Line 5: Line 5:
 
For the output signal to be time invariant, the response to the shifted input signal <math> x[n-N] </math> should be the shifted output (<math> y[n-N] </math>).  Basically, this means that if the input signal is shifted along the x-axis by any amount of time, the output signal should produce the same value at <math> n + N </math> that it used to produce at <math> n </math> before the shift.
 
For the output signal to be time invariant, the response to the shifted input signal <math> x[n-N] </math> should be the shifted output (<math> y[n-N] </math>).  Basically, this means that if the input signal is shifted along the x-axis by any amount of time, the output signal should produce the same value at <math> n + N </math> that it used to produce at <math> n </math> before the shift.
  
For the system given, let's use the system corresponding to <math> X </math><sub>2</sub> and then select a time <math> n </math> of 4, and a shifted time <math> N </math> of 1.  If this system was time invariant, <math> Y </math><sub>2</sub><math>[n] </math> at time <math> n = 5 </math> should equal <math> Y </math><sub>1</sub><math>[n] </math> at <math> n = 4 </math>.
+
For the system given, let's use the signal/system corresponding to <math> X </math><sub>2</sub> for the first one and <math> X </math><sub>3</sub> for the second. Then select a time <math> n </math> of 4, and a shifted time <math> N </math> of 1.  If this system was time invariant, <math> Y </math><sub>2</sub><math>[n] </math> at time <math> n = 5 </math> should equal <math> Y </math><sub>1</sub><math>[n] </math> at <math> n = 4 </math>.
  
<math>\,\ X </math><sub>2</sub><math> \,\ [4-2] = </math>&delta<math> \,\ (2) </math>
 
  
<math>\,\ X </math><sub>2</sub><math> \,\ [4-1-2] = </math>&delta<math> \,\ (1) </math>
+
<math>\,\ X </math><sub>2</sub><math> \,\ [4] = \delta  (2) </math><br>
 +
<math>\,\ Y </math><sub>2</sub><math> \,\ [4] = 9\delta  (1) </math>
 +
 
 +
 
 +
 
 +
<math>\,\ X </math><sub>3</sub><math> \,\ [5] = \delta (2) </math><br>
 +
<math>\,\ Y </math><sub>3</sub><math> \,\ [5] = 16\delta  (1) </math>
 +
 
 +
 
 +
<math> 9\delta  (1) \ne 16\delta  (1) </math><br>
 +
<math>\,\ Y </math><sub>2</sub><math> \,\ [4]  \ne  Y </math><sub>3</sub><math> \,\ [5] </math><br>
 +
 
 +
 
 +
Therefore, the system is '''not''' time invariant.
  
 
=== Part B ===
 
=== Part B ===

Revision as of 15:46, 11 September 2008

Part E: Linearity and Time Invariance

Part A

For the output signal to be time invariant, the response to the shifted input signal $ x[n-N] $ should be the shifted output ($ y[n-N] $). Basically, this means that if the input signal is shifted along the x-axis by any amount of time, the output signal should produce the same value at $ n + N $ that it used to produce at $ n $ before the shift.

For the system given, let's use the signal/system corresponding to $ X $2 for the first one and $ X $3 for the second. Then select a time $ n $ of 4, and a shifted time $ N $ of 1. If this system was time invariant, $ Y $2$ [n] $ at time $ n = 5 $ should equal $ Y $1$ [n] $ at $ n = 4 $.


$ \,\ X $2$ \,\ [4] = \delta (2) $
$ \,\ Y $2$ \,\ [4] = 9\delta (1) $


$ \,\ X $3$ \,\ [5] = \delta (2) $
$ \,\ Y $3$ \,\ [5] = 16\delta (1) $


$ 9\delta (1) \ne 16\delta (1) $
$ \,\ Y $2$ \,\ [4] \ne Y $3$ \,\ [5] $


Therefore, the system is not time invariant.

Part B

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin