Line 3: Line 3:
 
<math>X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)]</math>
 
<math>X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)]</math>
  
Let us apply a time-delay of <math>n_0</math> to the system.  
+
Let us apply a time-delay of <math>n_0</math> to the system.
  
<math>\delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 -n_0)]  </math>
+
System followed by time-delay:
 +
 
 +
<math>\delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 +n_0)]  </math>
 +
 
 +
 
 +
Time-delay followed by system:
 +
 
 +
<math>\delta[n - k] \rightarrow time-delay \rightarrow \delta[n-(n_0 + k)] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)]</math>

Revision as of 16:43, 11 September 2008

6 a) The system cannot be time-invariant.

$ X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)] $

Let us apply a time-delay of $ n_0 $ to the system.

System followed by time-delay:

$ \delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 +n_0)] $


Time-delay followed by system:

$ \delta[n - k] \rightarrow time-delay \rightarrow \delta[n-(n_0 + k)] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett