(4 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
Example for a linear system is
 
Example for a linear system is
 +
        y(t) = t x(t)   
  
<math>x_1</math> = 8<math>e^t</math>         
+
<math>y_1</math> = 8<math>e^t</math>         
  
<math>x_2</math>=8<math>t^2</math>
+
<math>y_2</math>=8<math>t^2</math>
  
 
Let ,  
 
Let ,  
  
<math>x_3</math> = 8<math>e^t</math> + 8<math>t^2</math>
+
<math>x_3</math> = 5<math>e^t</math> + 3<math>t^2</math>
 +
 
 +
The output is
 +
 
 +
<math>p(t)</math> = 8<math>x_3</math>
 +
 
 +
<math>p(t)</math>=40 <math>e^t</math> + 24 <math>t^2</math>
 +
 
 +
<math>p(t)</math>= 5<math>x_1</math> + 3 <math>x_2</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
The example for a  nonlinear system is
 +
          y = <math>x^2 (t)</math>
 +
<math>y_1</math> = <math>t^2</math>       
 +
 
 +
<math>y_2</math>= <math>sin^2 t</math>
 +
 
 +
Let ,
 +
 
 +
<math>x_3</math> = <math>t</math> + <math>sin t</math>
 +
 
 +
The output is
 +
 
 +
<math>y(t)</math> = <math>x_3</math>
 +
 
 +
<math>y(t)</math> = <math>(t + sin t)^ 2</math>
 +
 
 +
<math>y(t)</math>= <math>t^2</math> + <math>sin^2 t</math> + <math>2 t sin t</math>

Latest revision as of 15:59, 12 September 2008

A system is said to be linear if it follows the following conditions

1) The response to $ x_1(t) $ + $ x_2(t) $ is $ y_1(t) $ +$ y_2(t) $.

2) The response to $ ax_1(t) $ is $ ay_1(t) $, where a is any complex constant.

Example for a linear system is

       y(t) = t x(t)     

$ y_1 $ = 8$ e^t $

$ y_2 $=8$ t^2 $

Let ,

$ x_3 $ = 5$ e^t $ + 3$ t^2 $

The output is

$ p(t) $ = 8$ x_3 $

$ p(t) $=40 $ e^t $ + 24 $ t^2 $

$ p(t) $= 5$ x_1 $ + 3 $ x_2 $



The example for a nonlinear system is

          y = $ x^2 (t) $

$ y_1 $ = $ t^2 $

$ y_2 $= $ sin^2 t $

Let ,

$ x_3 $ = $ t $ + $ sin t $

The output is

$ y(t) $ = $ x_3 $

$ y(t) $ = $ (t + sin t)^ 2 $

$ y(t) $= $ t^2 $ + $ sin^2 t $ + $ 2 t sin t $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin