(Linear System Example)
(Linear System Example)
Line 33: Line 33:
 
<math>y[kb]=ky[b] \,</math>
 
<math>y[kb]=ky[b] \,</math>
  
by performing the math
+
 
 +
 
 +
Here is the proof that the first prop holds.
  
 
<math> \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} </math>   
 
<math> \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} </math>   

Revision as of 10:28, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} $ where $ \mathbf{y}[b] = \begin{bmatrix}16 & 6 \end{bmatrix} $, $ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $, and $ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $


let $ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


If the system is linear these properties hold:


$ y[a+b]=y[a]+y[b] \, $


$ y[kb]=ky[b] \, $


Here is the proof that the first prop holds.

$ \mathbf{y}[a] = \begin{bmatrix}8 & 12 \end{bmatrix} $


$ \mathbf{y}[a+b] = \begin{bmatrix}24 & 18 \end{bmatrix} $


$ y[a]+y[b]= \begin{bmatrix}8 & 12 \end{bmatrix} +\begin{bmatrix}16 & 6 \end{bmatrix} = \begin{bmatrix}24 & 18 \end{bmatrix} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett