(Linear System Example)
(Linear System Example)
Line 13: Line 13:
  
 
Consider the system  
 
Consider the system  
<math> \mathbf{y}[b]=\mathbf{x}[b]\cdot\mathbf{M} </math>  
+
<math> \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} </math>  
 
where  
 
where  
<math> \mathbf{a} = \begin{bmatrix}7 & 12 \end{bmatrix} </math>,
+
<math> \mathbf{y}[b] = \begin{bmatrix}7 & 12 \end{bmatrix} </math>,
 
<math> \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>, and
 
<math> \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>, and
  
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>

Revision as of 10:14, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} $ where $ \mathbf{y}[b] = \begin{bmatrix}7 & 12 \end{bmatrix} $, $ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $, and

$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett