(Linear System Example)
(Linear System Example)
Line 14: Line 14:
 
Consider the system  
 
Consider the system  
 
<math> \mathbf{a}\cdot\mathbf{M}=\mathbf{b} </math>  
 
<math> \mathbf{a}\cdot\mathbf{M}=\mathbf{b} </math>  
where <math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math> is the identity matrix, <math> \mathbf{a} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>
+
where  
 
+
<math> \mathbf{a} = \begin{bmatrix}4 & 1 \end{bmatrix} </math>,
and y(t) and x(t) are n x 1 vectors.
+
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>,  
<math>Insert formula here</math>
+
and <math> \mathbf{b} = \begin{bmatrix}7 & 12 \end{bmatrix} </math>

Revision as of 10:05, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{a}\cdot\mathbf{M}=\mathbf{b} $ where $ \mathbf{a} = \begin{bmatrix}4 & 1 \end{bmatrix} $, $ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $, and $ \mathbf{b} = \begin{bmatrix}7 & 12 \end{bmatrix} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood