(New page: ==Part(a)== Show that P(B) > P(C) > P(T) > P(A): - P(H) = p , 0 < p < 1 <math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math> Recall geometric series: <math> \...)
 
(Part(a))
 
(10 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
<math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math>
 
<math> P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} </math>
 +
  
 
Recall geometric series:
 
Recall geometric series:
  
<math> \sum_{i=0}^\inf x^i = 1\{1-x}, for |x| < 1 </math>
+
 
 +
<math> \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x}</math>  for |x| < 1
 +
 
 +
 
 +
<math> P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} </math>
 +
 
 +
 
 +
Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Latest revision as of 17:09, 9 September 2008

Part(a)

     Show that P(B) > P(C) > P(T) > P(A):

- P(H) = p , 0 < p < 1

$ P(B) = p + p(1-p)^4 + p(1-p)^8 + \dots + p(1-p)^{4(n-1)} $


Recall geometric series:


$ \sum_{\imath=0}^{\infty} x^{\imath}= \frac{1}{1-x} $ for |x| < 1


$ P(B) = p\sum_{\imath=0}^{\infty} (1-p)^{4\imath} = \frac{p}{1-(1-p)} $


Repeat this for Carol, Ted, and Alice to show that the order of your toss affects your probability of winning.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood