Revision as of 05:09, 11 June 2013 by Rhea (Talk | contribs)


Solution for HW2.17, MA598, Weigel, Summer 2009

$ \text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r. $ $ \text{Proof: Let } \mathcal{C} \text{ denote the Cantor set. Define } f: $ $ \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) $ $ \mapsto \frac{x+y}{2}. $ $ \text{ Now f is clearly onto by examining the ternary representation of an element of } [0,1]. \text{ Given } r \in [-1,1], \frac{r+1}{2} \in [0,1] \Rightarrow $ $ \exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y). $ $ \text{ Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. $



Back to Assignment 2, MA598, Summer 2009, Weigel

Back to MA598R Summer 2009

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang