(New page: == Part E. Linearity and Time Invariance == A discrete-time system is such that when the input is one of the signals in the left column, then the output is the corresponding signal in the ...)
 
(Part E. Linearity and Time Invariance)
 
(17 intermediate revisions by one other user not shown)
Line 7: Line 7:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X0[n]=&delta;[n]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y0[n]=&delta;[n-1]</td>
+
     <td>X0[n]=&delta;[n]</td><td>&nbsp;&nbsp; &nbsp;&nbsp;</td><td>    Y0[n]=&delta;[n-1]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X1[n]=&delta;[n-1]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y1[n]=4&delta;[n-2]</td>
+
     <td>X1[n]=&delta;[n-1]</td><td>&nbsp;&nbsp; &nbsp;&nbsp;</td><td>    Y1[n]=4&delta;[n-2]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X2[n]=&delta;[n-2]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y2[n]=9 &delta;[n-3]</td>
+
     <td>X2[n]=&delta;[n-2]</td><td>&nbsp;&nbsp; &nbsp;&nbsp;</td><td>    Y2[n]=9 &delta;[n-3]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>X3[n]=&delta;[n-3]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Y3[n]=16 &delta;[n-4]</td>
+
     <td>X3[n]=&delta;[n-3]</td><td>&nbsp;&nbsp; &nbsp;&nbsp;</td><td>    Y3[n]=16 &delta;[n-4]</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
Line 22: Line 22:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td>Xk[n]=&delta;[n-k]</td><td>&nbsp;&nbsp;->&nbsp;&nbsp;</td><td>    Yk[n]=(k+1)^2 &delta;[n-(k+1)]</td>
+
     <td>Xk[n]=&delta;[n-k]</td><td>&nbsp;&nbsp; &nbsp;&nbsp;</td><td>    Yk[n]=(k+1)<math>^{2}</math> &delta;[n-(k+1)] For any non-negative integer k</td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
For any non-negative integer k
+
 
 +
== Can This System Be Time Invariant? ==
 +
Let the system be defined according to the first line, input: X0[n]=&delta;[n] and output: Y0[n]=&delta;[n-1] and time delay of 3.  Using the same method as in Part D, we can determine whether this system is time invariant or not.
 +
 
 +
&delta;[n] -> time delay -> &delta;[n-3] -> system -> 16&delta;[n-4]
 +
 
 +
&delta;[n] -> system -> &delta;[n-1] -> time delay -> &delta;[n-4]
 +
 
 +
 
 +
Since both cascades produce different outputs, this system is NON-time invariant.
 +
 
 +
 
 +
== What Input X[n] Would Yield the Output Y[n]=u[n-1]? ==
 +
According to the definition of the DT unit impulse that was given in class, u[n]=<math>\sum_{k=0}^{\infty}</math> &delta;[n-k]. 
 +
This means that the unit impulse is nothing more than the sum of all shifted deltas from 0 to infinity.  Now, we know that the input must be of this form.  So, in order to get the correct time shift, we simply need to subtract k+1 instead of k.  So, the input that produces the output Y[n]=u[n-1], is
 +
 
 +
X[n]=<math>\sum_{k=0}^{\infty}</math> &delta;[n-(k+1)].

Latest revision as of 10:26, 12 September 2008

Part E. Linearity and Time Invariance

A discrete-time system is such that when the input is one of the signals in the left column, then the output is the corresponding signal in the right column:

Input      Output
X0[n]=δ[n]      Y0[n]=δ[n-1]
X1[n]=δ[n-1]      Y1[n]=4δ[n-2]
X2[n]=δ[n-2]      Y2[n]=9 δ[n-3]
X3[n]=δ[n-3]      Y3[n]=16 δ[n-4]
...       ...
Xk[n]=δ[n-k]      Yk[n]=(k+1)$ ^{2} $ δ[n-(k+1)] For any non-negative integer k

Can This System Be Time Invariant?

Let the system be defined according to the first line, input: X0[n]=δ[n] and output: Y0[n]=δ[n-1] and time delay of 3. Using the same method as in Part D, we can determine whether this system is time invariant or not.

δ[n] -> time delay -> δ[n-3] -> system -> 16δ[n-4]

δ[n] -> system -> δ[n-1] -> time delay -> δ[n-4]


Since both cascades produce different outputs, this system is NON-time invariant.


What Input X[n] Would Yield the Output Y[n]=u[n-1]?

According to the definition of the DT unit impulse that was given in class, u[n]=$ \sum_{k=0}^{\infty} $ δ[n-k]. This means that the unit impulse is nothing more than the sum of all shifted deltas from 0 to infinity. Now, we know that the input must be of this form. So, in order to get the correct time shift, we simply need to subtract k+1 instead of k. So, the input that produces the output Y[n]=u[n-1], is

X[n]=$ \sum_{k=0}^{\infty} $ δ[n-(k+1)].

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett