(Input X[n])
 
Line 17: Line 17:
 
===2st Assumption: k represents time===
 
===2st Assumption: k represents time===
  
<math> d[n-k] --> [system] --> (k+1)^2*d[n-k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] \,</math>
+
<math> d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] \,</math>
  
 
yields not the same result as:
 
yields not the same result as:
  
<math> d[n-k] --> [timedelay -1] --> d[n-k-1)] --> [system] --> k^2*d[n-k] \,</math>
+
<math> d[n-k] --> [timedelay -1] --> d[n-(k-1)] --> [system] --> k^2*d[n-k] \,</math>
  
  

Latest revision as of 19:56, 10 September 2008

Time Invariance? or Time Variance?

System: $ Y_k[n] = (k+1)^2 d[n - (k+1)] \, $

Input: $ X_k[n] = d[n-k] \, $

Prob: Which variable represent time ?

1st Assumption: n represents time

$ d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[(n-1)-(k+1)] \, $

yields the same result as:

$ d[n-k] --> [timedelay -1] --> d[(n-1)-k] --> [system] --> (k+1)^2*d[(n-1)-(k+1)] \, $


2st Assumption: k represents time

$ d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] \, $

yields not the same result as:

$ d[n-k] --> [timedelay -1] --> d[n-(k-1)] --> [system] --> k^2*d[n-k] \, $


Remember: Time delay only occurs on function, not variable on equations.

Concluded, it is time invariant if we say n represents time, and it is time variant if we say k represents time.


Input X[n]

Since it is linear, we can say that

$ Y[n] = u[n-1] \, $

with an input $ X[n] = u[n] - u[1] \, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett