(Part (a))
Line 5: Line 5:
 
Shifting <math> X_{k}[n] </math> by a constant "a" yields <math> X_{k}[n-a] </math><br><br>
 
Shifting <math> X_{k}[n] </math> by a constant "a" yields <math> X_{k}[n-a] </math><br><br>
 
Shifting <math> Y_{k}[n] </math> by a constant "a" yields <math> Y_{k}[n-a] </math><br><br>
 
Shifting <math> Y_{k}[n] </math> by a constant "a" yields <math> Y_{k}[n-a] </math><br><br>
<math> X_{k}[n-a] = d[n-k-a] </math><br><br>
+
<math> (1) X_{k}[n-a] = d[n-k-a] </math><br><br>
<math> Y_{k}[n-a] = (k+1)^2 d[n-(k+1)-a] </math><br><br>
+
<math> (2) Y_{k}[n-a] = (k+1)^2 d[n-(k+1)-a] </math><br><br>
 +
As shown in (2), <math> (k+1)^2 </math> does not get shifted. Thus,

Revision as of 16:19, 11 September 2008

Part (a)

No. This system is not time-invariant. The general equation of the system is as follows.

$ X_{k}[n] = d[n-k] $

$ Y_{k}[n] = (k+1)^2 d[n-(k+1)] $

Shifting $ X_{k}[n] $ by a constant "a" yields $ X_{k}[n-a] $

Shifting $ Y_{k}[n] $ by a constant "a" yields $ Y_{k}[n-a] $

$ (1) X_{k}[n-a] = d[n-k-a] $

$ (2) Y_{k}[n-a] = (k+1)^2 d[n-(k+1)-a] $

As shown in (2), $ (k+1)^2 $ does not get shifted. Thus,

Alumni Liaison

EISL lab graduate

Mu Qiao