(Brian Thomas hw2 rhea)
 
(Brian Thomas rhea hw2)
Line 5: Line 5:
 
Translate this into math:  (See [[HW2-D_Brian_Thomas_ECE301Fall2008mboutin#Definition_of_Time_Invariance|this]] for symbology.)
 
Translate this into math:  (See [[HW2-D_Brian_Thomas_ECE301Fall2008mboutin#Definition_of_Time_Invariance|this]] for symbology.)
  
Let <math>x=\delta[n]</math>.  We are given that the system f works in the following way:
+
We are given some signal <math>x_k=\delta[n-k]</math> and a system <math>f(x_k) = f(\delta[n-k])) = (k+1)^2 \delta[n-(k+1)]</math>.  To show f is time-invariant, we must prove the following statement:
  
<math>f(S_k(x)) = f(S_k(\delta[n])) = f(\delta[n-k]) = (k+1)^2 \delta[n-(k+1)]</math>
+
<math>S_{k_0}(f(x_k)) = f(S_{k_0}(x_k)) \forall k_0 \text{ and }\forall k \in\mathbb{N}\cup{0}</math>
  
To show whether f is time invariant or time variant, we must examine the following:
+
<math>f(S_{k_0}(x_k)) = f(S_{k_0}(\delta[n-k])) = f(\delta[n-(k+k_0)]) = (k+k_0+1)^2 \delta[n-(k+k_0+1)]</math>
  
<math>S_k(f(x)) = S_k(f(\delta[n])) = S_k(\delta[n-1]) = \delta[n-(k+1)]</math>
+
<math>S_{k_0}(f(x_k)) = S_{k_0}(f(\delta[n-k])) = S_{k_0}((k+1)^2 \delta[n-(k+1)]) = (k+1)^2 \delta[n-(k+k_0+1)]</math>
  
Since <math>\exists (k \geq 0) \in \mathbb{Z} \ s.t. \ S_k(f(x)) \neq f(S_k(x))</math>  (e.g., if k=1), f (ie, the "system") is '''time variant'''.
+
Pick <math>k=k_0=1</math>:
 +
 
 +
<math>f(S_{k_0}(x_k)) = (3)^2 \delta[n-(3)] \neq (2)^2 \delta[n-(3)] = S_{k_0}(f(x_k))</math>
 +
 
 +
Since <math> \exists k_0, k \ s.t. \ S_{k_0}(f(x_k)) \neq f(S_{k_0}(x_k)) </math>  (e.g., if <math>k=k_0=1</math>), f (ie, the "system") is '''time variant'''.
  
  
 
==Part B==
 
==Part B==
**coming soon...
+
We are told to assume f is linear.  We would like to find input x[n] s.t. we get output y[n] = u[n-1].  To be continued...

Revision as of 06:03, 11 September 2008

Part A

We are given the following: $ X_k[n]=\delta[n-k] \rightarrow \text{ system } \rightarrow Y_k[n]=(k+1)2 \delta[n-(k+1)] \ (k \in \mathbb{Z}, k \geq 0) $

Translate this into math: (See this for symbology.)

We are given some signal $ x_k=\delta[n-k] $ and a system $ f(x_k) = f(\delta[n-k])) = (k+1)^2 \delta[n-(k+1)] $. To show f is time-invariant, we must prove the following statement:

$ S_{k_0}(f(x_k)) = f(S_{k_0}(x_k)) \forall k_0 \text{ and }\forall k \in\mathbb{N}\cup{0} $

$ f(S_{k_0}(x_k)) = f(S_{k_0}(\delta[n-k])) = f(\delta[n-(k+k_0)]) = (k+k_0+1)^2 \delta[n-(k+k_0+1)] $

$ S_{k_0}(f(x_k)) = S_{k_0}(f(\delta[n-k])) = S_{k_0}((k+1)^2 \delta[n-(k+1)]) = (k+1)^2 \delta[n-(k+k_0+1)] $

Pick $ k=k_0=1 $:

$ f(S_{k_0}(x_k)) = (3)^2 \delta[n-(3)] \neq (2)^2 \delta[n-(3)] = S_{k_0}(f(x_k)) $

Since $ \exists k_0, k \ s.t. \ S_{k_0}(f(x_k)) \neq f(S_{k_0}(x_k)) $ (e.g., if $ k=k_0=1 $), f (ie, the "system") is time variant.


Part B

We are told to assume f is linear. We would like to find input x[n] s.t. we get output y[n] = u[n-1]. To be continued...

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett