Revision as of 14:51, 11 September 2008 by Vhsieh (Talk)

Time Invariance

A system is considered time-invariant if the following two orders of operations performed on a function $ x(t)\! $ yield the same result:


1. The function is put through the system, and then, the function is shifted in time.

2. The function undergoes a time shift, and then, the function goes through the system.


An example of a time invariant system is as follows:


$ y(t) = 2x(t)\! $


The proof for this is rather simple. Suppose $ x(t) = t - 12\! $. After going through the system, we are left with $ 2t - 24\! $. After a time shift of, let's say $ 5\! $, we are left with $ 2(t - 5) - 24\! $, which is the same as $ 2t - 34\! $.


When we shift the same function first, we get $ (t - 5) - 12\! $. After we put that through the system, we are left with $ 2(t - 5) - 24\! $, which is, once again, the same as $ 2t - 34\! $. Thus, the two orders of operations give the same result, which means the system is time invariant.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett