(Example of Time invariant system and its proof)
Line 1: Line 1:
 
 
== TIME INVARIANCE ==
 
== TIME INVARIANCE ==
 
Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."
 
Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."
Line 6: Line 5:
 
== Example of Time invariant system and its proof ==
 
== Example of Time invariant system and its proof ==
 
<math>\,y(t)=e^{x(t)}\,</math>
 
<math>\,y(t)=e^{x(t)}\,</math>
 +
 +
 +
'''Proof:'''
 +
 +
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 +
 +
<math>\,                                                            =e^{x(t-t0)}\,</math>
 +
 +
 +
 +
<math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)}</math>
 +
 +
<math>\,                                                            =e^{x(t-t0)}\,</math>
 +
 +
 +
Both cascades yielded the same outputs, thus <math>\,y(t)=e^{x(t)}\,</math> is time invariant.
 +
 +
== Example of Time variant system and its proof ==
 +
<math>\,y(t)=x(2*t)\,</math>
  
  

Revision as of 17:20, 12 September 2008

TIME INVARIANCE

Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."


Example of Time invariant system and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Example of Time variant system and its proof

$ \,y(t)=x(2*t)\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett