Line 5: Line 5:
 
== Example of Time-Invariant System ==
 
== Example of Time-Invariant System ==
  
<font size="3">Equation: <math>y(t) = 3x(t)</math>
+
<font size="3">System: <math>x(t) \to y(t) = 3x(t)</math>
 +
 
 +
 
  
 
<math>x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0})</math>
 
<math>x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0})</math>
  
 
<math>x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0})</math>
 
<math>x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0})</math>
 +
 +
  
 
Since <math>3x(t-t_{0})</math> is equal to <math>3x(t-t_{0})</math>, the system is time-invariant.</font>
 
Since <math>3x(t-t_{0})</math> is equal to <math>3x(t-t_{0})</math>, the system is time-invariant.</font>
Line 15: Line 19:
 
== Example of Non-Time-Invariant System ==
 
== Example of Non-Time-Invariant System ==
  
<font size="3">Equation: <math>y(t) = x(2t)</math>
+
<font size="3">System: <math>x(t) \to y(t) = x(2t)</math>
 +
 
  
 
<math>x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0}))</math>
 
<math>x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0}))</math>
  
 
<math>x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0})</math>
 
<math>x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0})</math>
 +
 +
  
 
Since <math>x(2(t-t_{0}))</math> does not equal <math>x(2t-t_{0})</math>, the system is not time-invariant.</font>
 
Since <math>x(2(t-t_{0}))</math> does not equal <math>x(2t-t_{0})</math>, the system is not time-invariant.</font>

Latest revision as of 14:20, 10 September 2008

Definition

If the cascade $ x(t) \to timedelay \to sys \to z(t) $ yields the same output as the cascade $ x(t) \to sys \to timedelay \to z(t) $ for any $ t_{0} $, then the system is called "time invariant".

Example of Time-Invariant System

System: $ x(t) \to y(t) = 3x(t) $


$ x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0}) $

$ x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0}) $


Since $ 3x(t-t_{0}) $ is equal to $ 3x(t-t_{0}) $, the system is time-invariant.

Example of Non-Time-Invariant System

System: $ x(t) \to y(t) = x(2t) $


$ x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0})) $

$ x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0}) $


Since $ x(2(t-t_{0})) $ does not equal $ x(2t-t_{0}) $, the system is not time-invariant.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood