(New page: Image:two.jpg)
 
(Example for a linear system)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:two_ECE301Fall2008mboutin.jpg]]
+
==Linearity==
 +
'''What is a linear system?'''
 +
A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b<math>{\in}</math>complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t).
 +
A more mathematical description would be,
 +
given two valid inputs
 +
 
 +
<math>{x_1(t)}</math>
 +
 
 +
<math>{x_2(t)}</math>
 +
 
 +
and their respective outputs
 +
 
 +
<math>({y_1(t)}=h*{x_1(t)}</math>
 +
 
 +
<math>{y_2(t)}=h*{x_2(t)}</math>
 +
then a linear system must satisfy
 +
 
 +
<math>{a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}]</math>
 +
 
 +
==Example for a linear system==
 +
Consider,
 +
<math>{x_1(t)=sin(t)}</math>
 +
 
 +
 
 +
<math>{x_2(t)=cos(t)}</math>
 +
 
 +
Let,
 +
  <math>{y_1(t)=tsin(t)}</math>
 +
 
 +
 
 +
  <math>y_2(t)=tcos(t)</math>
 +
 
 +
Now,
 +
 
 +
(1).<math>{ay_1(t)+by_2(t)}={atsin(t)+btcos(t)}</math>
 +
 
 +
And,
 +
(2).<math>{H[{ax_1(t)+bx_2(t)}]}={t{asin(t)+bcos(t)}}={atsin(t)+btcos(t)}</math>
 +
 +
Thus since (1) and (2) are the same the system is linear.
 +
 
 +
==Example for non linear system==
 +
<math>{x_1(t)=t^3}</math>
 +
 
 +
<math>{x_2(t)=sin(t)}</math>
 +
 
 +
<math>{y_1(t)={[x_1(t)]^2}}</math>
 +
 
 +
<math>{y_2(t)={[x_2(t)]^2}}</math>
 +
 
 +
Therefore,
 +
 
 +
(1).<math>{ay_1(t)+by_2(t)}={a{t}^6+b{sin}^2(t)}</math>
 +
 
 +
 
 +
(2).<math>{H[{ax_1(t)+bx_2(t)}]}={[{a{t}^3}+{bsin(t)}]^2}</math>
 +
 
 +
When we observe (1) and (2) we notice that they are not equal. Thus the system is not linear.

Latest revision as of 10:56, 12 September 2008

Linearity

What is a linear system? A linear system is a mathematical model of a system based on the use of a linear operator. A system is called "linear" if for any constants a,b$ {\in} $complex number and for any inputs x1(t) and x2(t) yielding output y1(t),y2(t) respectively the response to a.x1(t)+b.x2(t) is a.y1(t)+b.y2(t). A more mathematical description would be, given two valid inputs

$ {x_1(t)} $

$ {x_2(t)} $

and their respective outputs

$ ({y_1(t)}=h*{x_1(t)} $

$ {y_2(t)}=h*{x_2(t)} $ then a linear system must satisfy

$ {a*y_1(t)}+{b*y_2(t)}=H*[{a*x_1(t)+b*y_1(t)}] $

Example for a linear system

Consider, $ {x_1(t)=sin(t)} $


$ {x_2(t)=cos(t)} $

Let,

  $ {y_1(t)=tsin(t)} $


  $ y_2(t)=tcos(t) $

Now,

(1).$ {ay_1(t)+by_2(t)}={atsin(t)+btcos(t)} $

And, (2).$ {H[{ax_1(t)+bx_2(t)}]}={t{asin(t)+bcos(t)}}={atsin(t)+btcos(t)} $

Thus since (1) and (2) are the same the system is linear.

Example for non linear system

$ {x_1(t)=t^3} $

$ {x_2(t)=sin(t)} $

$ {y_1(t)={[x_1(t)]^2}} $

$ {y_2(t)={[x_2(t)]^2}} $

Therefore,

(1).$ {ay_1(t)+by_2(t)}={a{t}^6+b{sin}^2(t)} $


(2).$ {H[{ax_1(t)+bx_2(t)}]}={[{a{t}^3}+{bsin(t)}]^2} $

When we observe (1) and (2) we notice that they are not equal. Thus the system is not linear.

Alumni Liaison

EISL lab graduate

Mu Qiao