Revision as of 17:51, 12 September 2008 by Lee251 (Talk)

LINEARITY

Linearity, in my definition, means that superposition always works. In other words, summation of inputs yield summation of outputs.

Example of Linearity and its proof

$ \,y(t)=x(2t)\, $


Proof:

$ x1(t) \to System \to y1(t)=x1(2t) \to Scalar multiplication(*a) \to ax1(2t) $

$ x2(t) \to System \to y2(t)=x2(2t) \to Scalar multiplication(*b) \to bx2(2t) $

$ ax1(2t) and bx2(2t) \to SUM \to ax1(2t)+bx2(2t) $


$ x1(t) \to Scalar multiplication(*a) \to ax1(t) $

$ x2(t) \to Scalar multiplication(*b) \to bx2(t) $

$ ax1(t) and bx2(t) \to SUM \to \to System \to ax1(2t)+bx2(2t) $

Those two yielded the same outputs thus it is linear.

Example of non-linearity and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x1(t) \to System \to y1(t)=e^{x1(t)} \to Scalar multiplication(*a) \to ae^{x1(t)} $

$ x2(t) \to System \to y2(t)=e^{x2(t)}\to Scalar multiplication(*b) \to be^{x2(t)} $

$ ae^{x1(t)} & be^{x2(t)} \to SUM \to ae^{x1(t)}+be^{x2(t)} $


$ x1(t) \to Scalar multiplication(*a) \to ax1(t) $

$ x2(t) \to Scalar multiplication(*b) \to bx2(t) $

$ ax1(t) and bx2(t) \to SUM \to \to System \to e^{ax1(2t)+bx2(2t)}=e^{ax1(2t)}e^{bx2(2t)} $

Those two yielded the same outputs thus it is linear.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin