(6 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
== Example: Linear ==
 
== Example: Linear ==
  
 +
One-Way
  
 +
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
 +
                            =  a*cos(t)+b*sin(t) = z(t)
 +
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
  
  
 +
Reverse-Way
 +
 +
cos(t) = x1(t)*a +++
 +
            =  a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)
 +
sin(t) = x2(t)*b +++
 +
 +
 +
since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.
  
 
== Example: Non-Linear ==
 
== Example: Non-Linear ==
Line 20: Line 32:
 
                                   = a*2*x1[n]^3+2*b*x2[n]^3
 
                                   = a*2*x1[n]^3+2*b*x2[n]^3
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 +
  
 
Reverse-way
 
Reverse-way

Latest revision as of 12:21, 12 September 2008

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way

x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++

                            =   a*cos(t)+b*sin(t) = z(t)

x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++


Reverse-Way

cos(t) = x1(t)*a +++

            =   a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)

sin(t) = x2(t)*b +++


since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++


Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett