Line 12: Line 12:
 
After constant long division we get to the base equation where there is still a remainder of 1.
 
After constant long division we get to the base equation where there is still a remainder of 1.
 
Therefore <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
Therefore <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 +
 +
 +
 +
== Even easier would be to use the Euclidean Algorithm ==
 +
<math>gcd(5*n + 3, 7*n + 4) = gcd(5*n + 3, 2*n + 1)</math>
 +
<math>                      = gcd(3*n + 2, 2*n + 1)</math>
 +
<math>                      = gcd(n + 1, 2*n + 1)</math>
 +
<math>                      = gcd(n + 1, n)</math>
 +
<math>                      = gcd(1, n)</math>
 +
<math>                      = 1</math>
 +
 +
Since the GCD of the two expressions is one for all n, they are relatively prime.

Revision as of 21:43, 6 September 2008

Show that $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.

$ 7*n + 4 = 5*n + 3 + 2*n + 1 $

$ 5*n + 3 = 2*(2*n + 1) + n + 1 $

$ 2*n + 1 = 1*(n + 1) + n $

$ n + 1 = 1*n + 1 $


After constant long division we get to the base equation where there is still a remainder of 1. Therefore $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.


Even easier would be to use the Euclidean Algorithm

$ gcd(5*n + 3, 7*n + 4) = gcd(5*n + 3, 2*n + 1) $ $ = gcd(3*n + 2, 2*n + 1) $ $ = gcd(n + 1, 2*n + 1) $ $ = gcd(n + 1, n) $ $ = gcd(1, n) $ $ = 1 $

Since the GCD of the two expressions is one for all n, they are relatively prime.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood