Line 16: Line 16:
  
 
<math>X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\!</math>
 
<math>X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\!</math>
 +
 +
      <math>= \sum^{\infty}_{n = -\infty} x[n](re^{j\omega})^{-n}\!</math>

Revision as of 16:32, 3 December 2008

The Z-Transform

Similar to the Laplace Transform, the Z-Transform is an extension of the Fourier Transform, in this case the DT Fourier Transform. As previously defined, the response, $ y[n]\! $, of a DT LTI system is $ y[n] = H(z)z^n\! $, where $ H(z) = \sum^{\infty}_{n = -\infty} h[n]z^{-n}\! $. When $ z = e^{j\omega}\! $ with $ \omega\! $ real, this summation equals the Fourier Transform of $ h[n]\! $. When $ z\! $ is not restricted to this value, the summation is know as the Z-Transform of $ h[n]\! $. To be exact,

$ X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\! $

where $ z\! $ is a complex variable. This is sometimes denoted as $ X(z) = Z(x[n])\! $.

Relationship between Z-Transform and Fourier Transform

The Fourier Transform at $ \omega\! $ is equal to the Z-Transform at $ e^{j\omega}\! $, as shown below.

$ X(\omega) = X(e^{j\omega})\! $

If we look at the unit circle with radius $ r\! $ and $ X(z) = X(re^{j\omega})\! $, then

$ X(z) = \!F(x[n]r^{-n})\! $ because

$ X(z) = \sum^{\infty}_{n = -\infty} x[n]z^{-n}\! $

     $ = \sum^{\infty}_{n = -\infty} x[n](re^{j\omega})^{-n}\! $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett