Line 12: Line 12:
 
Let's consider the case where <math>s = j\omega\!</math>.
 
Let's consider the case where <math>s = j\omega\!</math>.
  
<math>X(s)|_{s=j\omega} = X(j\omega)\!</math>
+
<math>X(s)|_{s=j\omega} = X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt = F(x(t) = X (\omega)\!</math>

Revision as of 16:14, 24 November 2008

The Laplace Transform

The Laplace Transform is a generalization of the Fourier Transform. Instead of considering only the imaginary axis, $ j\omega\! $, (as the Fourier Transform does) the Laplace Transform considers all complex values represented by the general complex variable $ s\! $. Take the following simple picture:

Fourier Transform: $ x(t) --> X(\omega)\! $ where $ \omega\! $ is a frequency.

Laplace Transform: $ x(t) --> X(s)\! $ where $ s\! $ is a complex variable.

Mathematically, the Laplace Transform is represented as follows:

$ X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt\! $

Let's consider the case where $ s = j\omega\! $.

$ X(s)|_{s=j\omega} = X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt = F(x(t) = X (\omega)\! $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett