(New page: ====<math>X(s)</math> s is a complex variable==== <math>X(s) = x(s)e^{-st}dt</math>)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
====<math>X(s)</math> s is a complex variable====
 
====<math>X(s)</math> s is a complex variable====
  
<math>X(s) = x(s)e^{-st}dt</math>
+
====<math>X(s) = \int_{-\infty}^{\infty}x(s)e^{-st}dt</math>====
 +
 
 +
<b>The Laplace Transform <math>X(s)</math> evaluated on the imaginary axis <math>X(j\omega)</math> is equal to the F.T> at <math>\omega</math></b>
 +
 
 +
    So the F.T. is the restriction of the L.T. on the imaginary axis, <math>s=j\omega</math>
 +
 
 +
<math>X(s) = \int_{-\infty}^{\infty}x(s)e^{-st}dt = \int_{-\infty}^{\infty}x(s)e^{-(a+j\omega)t}dt = \int_{-\infty}^{\infty}x(s)e^{-at}+e^{j\omega t}dt = F(x(t)e^{-t})</math>
 +
 
 +
    Where a is the real part of s.

Latest revision as of 11:51, 24 November 2008

$ X(s) $ s is a complex variable

$ X(s) = \int_{-\infty}^{\infty}x(s)e^{-st}dt $

The Laplace Transform $ X(s) $ evaluated on the imaginary axis $ X(j\omega) $ is equal to the F.T> at $ \omega $

    So the F.T. is the restriction of the L.T. on the imaginary axis, $ s=j\omega $

$ X(s) = \int_{-\infty}^{\infty}x(s)e^{-st}dt = \int_{-\infty}^{\infty}x(s)e^{-(a+j\omega)t}dt = \int_{-\infty}^{\infty}x(s)e^{-at}+e^{j\omega t}dt = F(x(t)e^{-t}) $

    Where a is the real part of s.

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010