(New page: ==Introduction== This page calculates the Energy and Power of the signal <math>2\sin(t)\cos(t)<\math> ==Power== <font size="5"> <math>P = \int_{t_1}^{t_2} \! |f(t)|^2\ dt</math> <math>P...)
 
Line 1: Line 1:
 
==Introduction==
 
==Introduction==
  
This page calculates the Energy and Power of the signal <math>2\sin(t)\cos(t)<\math>
+
This page calculates the Energy and Power of the signal <math>2\sin(t)\cos(t)</math>
 +
 
 
==Power==
 
==Power==
 
<font size="5">
 
<font size="5">
Line 7: Line 8:
  
  
<math>P = \int_0^2\pi \! |\sin(t)|^2\ dt</math>
+
<math>P = \int_0^{2\pi} \! |2\sin(t)\cos(t)|^2\ dt</math>
  
  
<math>P = \int_0^2\pi \! |{(1-\cos(2t))\over 2}| dt</math>
+
<math>P = \int_0^{2\pi} \! |\sin(2t)|^2\ dt</math>
  
  
<math>P = {1\over 2}\int_0^2\pi \! |1-\cos(2t)| dt</math>
+
<math>P = \int_0^{2\pi} \! |{(1-\cos(4t))\over 2}| dt</math>
  
  
<math>P = {1\over 2} ( t - {1\over 2}\sin(2t) )\mid_0^{2\pi}</math>
+
<math>P = {1\over 2}\int_0^{2\pi} \! |1-\cos(4t)| dt</math>
  
  
<math>P = {1\over 2}t - {1\over 4}\sin(2t) )\mid_0^{2\pi}</math>
+
<math>P = {1\over 2} ( t - {1\over 4}\sin(4t) )\mid_0^{2\pi}</math>
  
  
<math>P = {1\over 2}(2\pi) - {1\over 4}\sin(2*2\pi) - [{1\over 2}(0) - {1\over 4}\sin(2*0)]</math>
+
<math>P = {1\over 2}t - {1\over 8}\sin(4t) )\mid_0^{2\pi}</math>
  
  
<math>P = \pi - {1\over4}\sin(4\pi) = \pi + 0</math>
+
<math>P = {1\over 2}(2\pi) - {1\over 8}\sin(4*2\pi) - [{1\over 2}(0) - {1\over 8}\sin(4*0)]</math>
 +
 
 +
 
 +
<math>P = \pi - {1\over8}\sin(8\pi) </math>
  
  
Line 41: Line 45:
  
  
<math>E = {1\over(2\pi-0)}\int_{0}^{2\pi} \! |\sin(t)|^2 dt</math>
+
<math>E = {1\over(2\pi-0)}\int_{0}^{2\pi} \! |2\sin(t)cos(t)|^2 dt</math>
 +
 
 +
 
 +
<math>E = {1\over(2\pi)}\int_{0}^{2\pi} \! |\sin(2t)|^2 dt</math>
  
  
<math>E = {1\over(2\pi-0)}\int_{0}^{2\pi} \! |{(1-\cos(2t))\over 2}| dt</math>
+
<math>E = {1\over(2\pi)}\int_{0}^{2\pi} \! |{(1-\cos(4t))\over 2}| dt</math>
  
  
<math>E = {1\over{2\pi}}*{1\over 2}\int_0^{2\pi} \! |1-\cos(2t)| dt</math>
+
<math>E = {1\over{2\pi}}*{1\over 2}\int_0^{2\pi} \! |1-\cos(4t)| dt</math>
  
  
<math>E = {1\over{4\pi}} * [ t - {1\over2}\sin(2t) ]_0^{2\pi}</math>
+
<math>E = {1\over{4\pi}} * [ t - {1\over4}\sin(4t) ]_0^{2\pi}</math>
  
  
<math>E = {1\over{4\pi}} * [ 2\pi - {1\over2}\sin(4\pi) - ( 0 - {1\over2}\sin(0) ) ]</math>
+
<math>E = {1\over{4\pi}} * [ 2\pi - {1\over4}\sin(8\pi) - ( 0 - {1\over4}\sin(4\pi*0) ) ]</math>
  
  

Revision as of 08:15, 4 September 2008

Introduction

This page calculates the Energy and Power of the signal $ 2\sin(t)\cos(t) $

Power

$ P = \int_{t_1}^{t_2} \! |f(t)|^2\ dt $


$ P = \int_0^{2\pi} \! |2\sin(t)\cos(t)|^2\ dt $


$ P = \int_0^{2\pi} \! |\sin(2t)|^2\ dt $


$ P = \int_0^{2\pi} \! |{(1-\cos(4t))\over 2}| dt $


$ P = {1\over 2}\int_0^{2\pi} \! |1-\cos(4t)| dt $


$ P = {1\over 2} ( t - {1\over 4}\sin(4t) )\mid_0^{2\pi} $


$ P = {1\over 2}t - {1\over 8}\sin(4t) )\mid_0^{2\pi} $


$ P = {1\over 2}(2\pi) - {1\over 8}\sin(4*2\pi) - [{1\over 2}(0) - {1\over 8}\sin(4*0)] $


$ P = \pi - {1\over8}\sin(8\pi) $


$ P = \pi $




Energy

$ E = {1\over(t2-t1)}\int_{t_1}^{t_2} \! |f(t)|^2 dt $


$ E = {1\over(2\pi-0)}\int_{0}^{2\pi} \! |2\sin(t)cos(t)|^2 dt $


$ E = {1\over(2\pi)}\int_{0}^{2\pi} \! |\sin(2t)|^2 dt $


$ E = {1\over(2\pi)}\int_{0}^{2\pi} \! |{(1-\cos(4t))\over 2}| dt $


$ E = {1\over{2\pi}}*{1\over 2}\int_0^{2\pi} \! |1-\cos(4t)| dt $


$ E = {1\over{4\pi}} * [ t - {1\over4}\sin(4t) ]_0^{2\pi} $


$ E = {1\over{4\pi}} * [ 2\pi - {1\over4}\sin(8\pi) - ( 0 - {1\over4}\sin(4\pi*0) ) ] $


$ E = {1\over{4\pi}} * ( 2\pi ) $


$ E = {1\over2} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett