(New page: == Signal == <math>f(t) = \sin^2(t)</math> == Energy == <math>E = \int_{t_1}^{t_2}\!|f(t)|^2\ dt</math> <math>E = \int_{t_1}^{t_2}\!|\sin^2(t)|^2\ dt</math> <math>E = \int_{0}^{2\pi}\...)
 
(Energy)
Line 10: Line 10:
  
 
<math>E = \int_{0}^{2\pi}\!|\sin^4(t)|\ dt</math>
 
<math>E = \int_{0}^{2\pi}\!|\sin^4(t)|\ dt</math>
 +
 +
Since <math>\sin^2(t) = \frac{1-\cos(2t)}{2}</math>
 +
 +
<math>E = \frac{1}{4}\int_0^{2\pi}(1-\cos(2t))^2</math>
 +
 +
<math>E = \frac{1}{4}\int_0^{2\pi}(1-2\cos(2t)+\cos^2(2t))</math>
 +
 +
<math>E = \frac{1}{4}[1]^{2\pi}_{0} -  \frac{1}{4}[sin(2t)]^{2\pi}_{0} + \frac{1}{4}\int_0^{2\pi}(\cos^2(2t))</math>
 +
 +
<math>E = \frac{1}{2}\pi -  0 + \frac{1}{4}\int_0^{2\pi}(\cos^2(2t))</math>
 +
 +
Since <math>\cos^2(2t) = \frac{1+\cos(4t)}{2}</math>
 +
 +
<math>E = \frac{1}{2}\pi + \frac{1}{8}\int_0^{2\pi}(1+\cos(4t))</math>
 +
 +
<math>E = \frac{1}{2}\pi + \frac{1}{8}[1]^{2\pi}_{0} + \frac{1}{32}[\sin(4t)]^{2\pi}_{0}</math>
 +
 +
<math>E = \frac{1}{2}\pi + \frac{1}{8}(2\pi) + 0</math>
 +
 +
<math>E = \frac{1}{2}\pi + \frac{1}{4}\pi</math>
 +
 +
<math>E = \frac{3}{4}\pi </math>
 +
 +
== Average Power ==
 +
  
 
More to come ....
 
More to come ....

Revision as of 13:25, 2 September 2008

Signal

$ f(t) = \sin^2(t) $

Energy

$ E = \int_{t_1}^{t_2}\!|f(t)|^2\ dt $

$ E = \int_{t_1}^{t_2}\!|\sin^2(t)|^2\ dt $

$ E = \int_{0}^{2\pi}\!|\sin^4(t)|\ dt $

Since $ \sin^2(t) = \frac{1-\cos(2t)}{2} $

$ E = \frac{1}{4}\int_0^{2\pi}(1-\cos(2t))^2 $

$ E = \frac{1}{4}\int_0^{2\pi}(1-2\cos(2t)+\cos^2(2t)) $

$ E = \frac{1}{4}[1]^{2\pi}_{0} - \frac{1}{4}[sin(2t)]^{2\pi}_{0} + \frac{1}{4}\int_0^{2\pi}(\cos^2(2t)) $

$ E = \frac{1}{2}\pi - 0 + \frac{1}{4}\int_0^{2\pi}(\cos^2(2t)) $

Since $ \cos^2(2t) = \frac{1+\cos(4t)}{2} $

$ E = \frac{1}{2}\pi + \frac{1}{8}\int_0^{2\pi}(1+\cos(4t)) $

$ E = \frac{1}{2}\pi + \frac{1}{8}[1]^{2\pi}_{0} + \frac{1}{32}[\sin(4t)]^{2\pi}_{0} $

$ E = \frac{1}{2}\pi + \frac{1}{8}(2\pi) + 0 $

$ E = \frac{1}{2}\pi + \frac{1}{4}\pi $

$ E = \frac{3}{4}\pi $

Average Power

More to come ....

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang