(New page: The signal is: x(t) = 2cos(2t) == Energy == == Average Power ==)
 
(Average Power)
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
== Energy ==
 
== Energy ==
 +
<math>\int_0^{2\pi}{|2cos(2t)|^2dt}</math> 
  
 +
<math>= 4 \times \frac{1}{2}\int_0^{2\pi}(1+cos(4t))dt</math>
  
  
 +
<math>=2 \times (t+\frac{1}{4}sin(4t))|_{t=0}^{t=2\pi}</math>
 +
 +
 +
<math>=2 \times (2\pi+\frac{1}{4}-0-0)</math>
 +
 +
 +
<math>=4*\pi + \frac{1}{2}</math>
  
 
== Average Power ==
 
== Average Power ==
 +
<math>\frac{1}{2\pi - 0}\int_0^{2\pi}{|2cos(2t)|^2dt}</math> 
 +
 +
 +
<math>=\frac{1}{2\pi} \times 4 \times \frac{1}{2}\int_0^{2\pi}(1+cos(4t))dt</math>
 +
 +
 +
<math>=\frac{1}{\pi} \times (t+\frac{1}{4}sin(4t))|_{t=0}^{t=2\pi}</math>
 +
 +
 +
<math>=\frac{1}{\pi} \times (2\pi+\frac{1}{4}-0-0)</math>
 +
 +
 +
<math>= 2 + \frac{1}{4\pi}</math>

Latest revision as of 06:39, 3 September 2008

The signal is: x(t) = 2cos(2t)


Energy

$ \int_0^{2\pi}{|2cos(2t)|^2dt} $

$ = 4 \times \frac{1}{2}\int_0^{2\pi}(1+cos(4t))dt $


$ =2 \times (t+\frac{1}{4}sin(4t))|_{t=0}^{t=2\pi} $


$ =2 \times (2\pi+\frac{1}{4}-0-0) $


$ =4*\pi + \frac{1}{2} $

Average Power

$ \frac{1}{2\pi - 0}\int_0^{2\pi}{|2cos(2t)|^2dt} $


$ =\frac{1}{2\pi} \times 4 \times \frac{1}{2}\int_0^{2\pi}(1+cos(4t))dt $


$ =\frac{1}{\pi} \times (t+\frac{1}{4}sin(4t))|_{t=0}^{t=2\pi} $


$ =\frac{1}{\pi} \times (2\pi+\frac{1}{4}-0-0) $


$ = 2 + \frac{1}{4\pi} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood