(7 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<math>x(t) = \cos(4t)</math>
 
<math>x(t) = \cos(4t)</math>
  
<math>\int_{t1}^{t2} |x(t)|\, dt</math>
+
<math>E=\int_{t1}^{t2} |x(t)|^2\, dt</math>
 +
 
 +
<math>E=\int_{0}^{5\pi} |\cos(4t)|^2\, dt</math>
 +
 
 +
<math>E=\frac{1}{2}\int_{0}^{5\pi} |1+\cos(8t)|^2\, dt</math>
 +
 
 +
<math>E=\frac{1}{2}\times|t+\frac{1}{8}\sin(8t)|\    t = 0 to 5\pi</math>
 +
 
 +
<math>=\frac{1}{2} \times (5\pi + 0 - 0-0)</math>
 +
 
 +
<math>=\frac{5}{2}\times\pi</math>
 +
 
 +
 
 +
== Power ==
 +
 
 +
<math>P=\frac{1}{t2-t1}\times\int_{t1}^{t2} |x(t)|^2\, dt </math>
 +
 
 +
<math>P=\frac {1}{5\pi}\times\int_{0}^{5\pi} |\cos(4t)|^2\, dt </math>
 +
 
 +
<math>P=\frac{1}{10\pi}\times(t + \frac{1}{8}\sin(8t)  </math>        <math>t= 0 to 5\pi</math>
 +
 
 +
<math>P=\frac{1}{10\pi}\times(5\pi+0-0-0)</math>
 +
 
 +
<math>P=\frac{1}{2}</math>

Latest revision as of 16:11, 4 September 2008

I assumed $ x(t)=\cos(4t) $ and time interval 0 to $ 5\pi $

Energy

$ x(t) = \cos(4t) $

$ E=\int_{t1}^{t2} |x(t)|^2\, dt $

$ E=\int_{0}^{5\pi} |\cos(4t)|^2\, dt $

$ E=\frac{1}{2}\int_{0}^{5\pi} |1+\cos(8t)|^2\, dt $

$ E=\frac{1}{2}\times|t+\frac{1}{8}\sin(8t)|\ t = 0 to 5\pi $

$ =\frac{1}{2} \times (5\pi + 0 - 0-0) $

$ =\frac{5}{2}\times\pi $


Power

$ P=\frac{1}{t2-t1}\times\int_{t1}^{t2} |x(t)|^2\, dt $

$ P=\frac {1}{5\pi}\times\int_{0}^{5\pi} |\cos(4t)|^2\, dt $

$ P=\frac{1}{10\pi}\times(t + \frac{1}{8}\sin(8t) $ $ t= 0 to 5\pi $

$ P=\frac{1}{10\pi}\times(5\pi+0-0-0) $

$ P=\frac{1}{2} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin