(New page: <math> x(t)=e^t </math> [1,0] == Signal Energy == <math>E=\int_{t_1}^{t_2}x(t)dt</math> find the signal energy of <math>x(t)=e^{4t}\!</math> on <math>[0,1]\!</math> <math>E = \int_{0}^...)
 
(Energy)
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math> x(t)=e^t </math> [1,0]
+
== Signal ==
 +
'''<math> x(t)=e^t </math>''' [0,1]
  
== Signal Energy ==
+
== Energy ==
  
<math>E=\int_{t_1}^{t_2}x(t)dt</math>
+
<math>E=\int_{t_1}^{t_2}|x(t)|^2dt</math>
  
find the signal energy of <math>x(t)=e^{4t}\!</math> on <math>[0,1]\!</math>
+
<math>E = \int_{0}^{1} |e^{t}|^2\ dt \!</math>
  
<math>E = \int_{0}^{1} |e^{4t}|^2\ dt \!</math>
+
<br><br><math> = \int_{0}^{2} e^{2t}\ dt \!</math>
  
<br><br><math> = \int_{0}^{2} e^{8t}\ dt \!</math>
+
<math> = \frac{1}{2}[e^{2t}]_{t=0}^{t=1} \!</math>
 +
<math> = \frac{1}{2}(e^2 -1)\!</math>
  
<math> = \frac{1}{8}[e^{8t}]_{t=0}^{t=1} \!</math>
+
== Power ==
<math> = \frac{1}{8}(e^8 -1)\!</math>
+
  
== Signal Power ==
+
<math>P_{avg}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} |x(t)|^2\ dt \!</math>.
  
Average signal power between <math>[t_1,t_2]\!</math> is <math>P_{avg}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} |x(t)|^2\ dt \!</math>.
+
<math>P_{avg}=\frac{1}{1-0} \int_{0}^{1} |e^{t}|^2\ dt \!</math>
 
+
<br><br><math> = \int_{0}^{1} e^{2t}\ dt \!</math>
<math>P_{avg}=\frac{1}{1-0} \int_{0}^{1} |e^{4t}|^2\ dt \!</math>
+
<br><br><math> = \frac{1}{2}[e^{2t}]_{t=0}^{t=1} \!</math>
<br><br><math> = \int_{0}^{1} e^{8t}\ dt \!</math>
+
<br><br><math> = \frac{1}{2}(e^2 -1)\!</math>
<br><br><math> = \frac{1}{8}[e^{8t}]_{t=0}^{t=1} \!</math>
+
<br><br><math> = \frac{1}{8}(e^8 -1)\!</math>
+

Latest revision as of 14:51, 5 September 2008

Signal

$ x(t)=e^t $ [0,1]

Energy

$ E=\int_{t_1}^{t_2}|x(t)|^2dt $

$ E = \int_{0}^{1} |e^{t}|^2\ dt \! $



$ = \int_{0}^{2} e^{2t}\ dt \! $

$ = \frac{1}{2}[e^{2t}]_{t=0}^{t=1} \! $ $ = \frac{1}{2}(e^2 -1)\! $

Power

$ P_{avg}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} |x(t)|^2\ dt \! $.

$ P_{avg}=\frac{1}{1-0} \int_{0}^{1} |e^{t}|^2\ dt \! $

$ = \int_{0}^{1} e^{2t}\ dt \! $

$ = \frac{1}{2}[e^{2t}]_{t=0}^{t=1} \! $

$ = \frac{1}{2}(e^2 -1)\! $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood