(New page: <math> x(t)=e^t </math> [1,0] == Signal Energy == <math>E=\int_{t_1}^{t_2}x(t)dt</math> find the signal energy of <math>x(t)=e^{4t}\!</math> on <math>[0,1]\!</math> <math>E = \int_{0}^...)
 
Line 1: Line 1:
<math> x(t)=e^t </math> [1,0]
+
== Signal ==
  
== Signal Energy ==
+
<math> x(t)=e^t </math> [0,1]
 +
 
 +
== Energy ==
  
 
<math>E=\int_{t_1}^{t_2}x(t)dt</math>
 
<math>E=\int_{t_1}^{t_2}x(t)dt</math>
  
find the signal energy of <math>x(t)=e^{4t}\!</math> on <math>[0,1]\!</math>
+
find the signal energy of <math>x(t)=e^{t}\!</math> on <math>[0,1]\!</math>
  
 
<math>E = \int_{0}^{1} |e^{4t}|^2\ dt \!</math>
 
<math>E = \int_{0}^{1} |e^{4t}|^2\ dt \!</math>
Line 14: Line 16:
 
<math> = \frac{1}{8}(e^8 -1)\!</math>
 
<math> = \frac{1}{8}(e^8 -1)\!</math>
  
== Signal Power ==
+
== Power ==
  
 
Average signal power between <math>[t_1,t_2]\!</math> is <math>P_{avg}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} |x(t)|^2\ dt \!</math>.
 
Average signal power between <math>[t_1,t_2]\!</math> is <math>P_{avg}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} |x(t)|^2\ dt \!</math>.

Revision as of 14:42, 5 September 2008

Signal

$ x(t)=e^t $ [0,1]

Energy

$ E=\int_{t_1}^{t_2}x(t)dt $

find the signal energy of $ x(t)=e^{t}\! $ on $ [0,1]\! $

$ E = \int_{0}^{1} |e^{4t}|^2\ dt \! $



$ = \int_{0}^{2} e^{8t}\ dt \! $

$ = \frac{1}{8}[e^{8t}]_{t=0}^{t=1} \! $ $ = \frac{1}{8}(e^8 -1)\! $

Power

Average signal power between $ [t_1,t_2]\! $ is $ P_{avg}=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} |x(t)|^2\ dt \! $.

$ P_{avg}=\frac{1}{1-0} \int_{0}^{1} |e^{4t}|^2\ dt \! $

$ = \int_{0}^{1} e^{8t}\ dt \! $

$ = \frac{1}{8}[e^{8t}]_{t=0}^{t=1} \! $

$ = \frac{1}{8}(e^8 -1)\! $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010