(New page: == Energy == <math>f(t)=2cos(t)</math> <math>E = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|f(t)|^2 dt</math> == Power == <math>f(t)=2cos(t)</math> <math>P = \int_{t_1}^{t_2}\!|f(t)|^2\ dt</ma...)
 
(Power)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Energy ==
 
== Energy ==
 +
<font size="4">
  
 
<math>f(t)=2cos(t)</math>
 
<math>f(t)=2cos(t)</math>
 +
  
 
<math>E = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|f(t)|^2 dt</math>
 
<math>E = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|f(t)|^2 dt</math>
 +
 +
 +
<math>E = {1\over(2\pi-0)}\int_{0}^{2\pi}\!|2cos(t)|^2 dt</math>
 +
 +
 +
<math>E = {1\over(2\pi-0)}{1\over2}(4)\int_{0}^{2\pi}\!(1+cos(2t)) dt</math>
 +
 +
 +
<math>E = {1\over\pi}(2\pi+{1\over2}sin(2*2\pi)) dt</math>
 +
 +
 +
<math>E = {2}</math>
 +
 +
</font>
  
 
== Power ==
 
== Power ==
 +
<font size="4">
  
 
<math>f(t)=2cos(t)</math>
 
<math>f(t)=2cos(t)</math>
 +
  
 
<math>P = \int_{t_1}^{t_2}\!|f(t)|^2\ dt</math>
 
<math>P = \int_{t_1}^{t_2}\!|f(t)|^2\ dt</math>
 +
 +
 +
 +
<math>P = \int_{0}^{2\pi}\!|2cos(t)|^2\ dt</math>
 +
 +
 +
<math>P = (4){1\over2}\int_{0}^{2\pi}\!1+cos(2t) dt</math>
 +
 +
 +
<math>P = (4){1\over2}(2\pi+{1\over2}sin(2*2\pi)</math>
 +
 +
 +
<math>P = 4\pi</math>
 +
</font>

Latest revision as of 15:05, 4 September 2008

Energy

$ f(t)=2cos(t) $


$ E = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|f(t)|^2 dt $


$ E = {1\over(2\pi-0)}\int_{0}^{2\pi}\!|2cos(t)|^2 dt $


$ E = {1\over(2\pi-0)}{1\over2}(4)\int_{0}^{2\pi}\!(1+cos(2t)) dt $


$ E = {1\over\pi}(2\pi+{1\over2}sin(2*2\pi)) dt $


$ E = {2} $

Power

$ f(t)=2cos(t) $


$ P = \int_{t_1}^{t_2}\!|f(t)|^2\ dt $


$ P = \int_{0}^{2\pi}\!|2cos(t)|^2\ dt $


$ P = (4){1\over2}\int_{0}^{2\pi}\!1+cos(2t) dt $


$ P = (4){1\over2}(2\pi+{1\over2}sin(2*2\pi) $


$ P = 4\pi $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood