(Average Power)
(Energy)
 
(One intermediate revision by the same user not shown)
Line 26: Line 26:
 
<font size="4">
 
<font size="4">
  
<math>f(t)=cos(t)</math>
+
<math>E = \int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
  
  
<math>P = \int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
 
  
 +
<math>E = \int_{0}^{4\pi}\!|cos(t)|^2\ dt</math>
  
  
<math>P = \int_{0}^{4\pi}\!|cos(t)|^2\ dt</math>
+
<math>E = {1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt</math>
  
  
<math>P = {1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt</math>
+
<math>E = {1\over2}(4\pi+{1\over2}sin(8\pi))</math>
  
  
<math>P = {1\over2}(4\pi+{1\over2}sin(8\pi))</math>
+
<math>E = 2\pi</math>
 
+
 
+
<math>P = 2\pi</math>
+
  
 
</font>
 
</font>

Latest revision as of 14:19, 5 September 2008

Consider the signal $ x(t)=cos(t) $ over the interval 0 to $ 4\pi $

Average Power

$ Avg. Power = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $


$ Avg. Power = {1\over(4\pi-0)}\int_{0}^{4\pi}\!|cos(t)|^2 dt $


$ Avg. Power = {1\over(4\pi)}{1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt $


$ Avg. Power = {1\over8\pi}(4\pi+{1\over2}sin(8\pi)) $


$ Avg. Power = {1\over2} $

Energy

$ E = \int_{t_1}^{t_2}\!|x(t)|^2\ dt $


$ E = \int_{0}^{4\pi}\!|cos(t)|^2\ dt $


$ E = {1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt $


$ E = {1\over2}(4\pi+{1\over2}sin(8\pi)) $


$ E = 2\pi $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin