(Energy)
(Power)
Line 23: Line 23:
 
</font>
 
</font>
  
== Power ==
+
== Energy ==
 
<font size="4">
 
<font size="4">
  
<math>f(t)=2cos(t)</math>
+
<math>f(t)=cos(t)</math>
  
  
<math>P = \int_{t_1}^{t_2}\!|f(t)|^2\ dt</math>
+
<math>P = \int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
  
  
  
<math>P = \int_{0}^{2\pi}\!|2cos(t)|^2\ dt</math>
+
<math>P = \int_{0}^{4\pi}\!|cos(t)|^2\ dt</math>
  
  
<math>P = (4){1\over2}\int_{0}^{2\pi}\!1+cos(2t) dt</math>
+
<math>P = {1\over2}\int_{0}^{4\pi}\!1+cos(2t) dt</math>
  
  

Revision as of 14:14, 5 September 2008

Average Power

Consider the signal $ x(t)=cos(t) $ over the interval 0 to $ 4\pi $


$ Avg. Power = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $


$ Avg. Power = {1\over(4\pi-0)}\int_{0}^{4\pi}\!|cos(t)|^2 dt $


$ Avg. Power = {1\over(4\pi)}{1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt $


$ Avg. Power = {1\over8\pi}(4\pi+{1\over2}sin(8\pi)) dt $


$ Avg. Power = {1\over2} $

Energy

$ f(t)=cos(t) $


$ P = \int_{t_1}^{t_2}\!|x(t)|^2\ dt $


$ P = \int_{0}^{4\pi}\!|cos(t)|^2\ dt $


$ P = {1\over2}\int_{0}^{4\pi}\!1+cos(2t) dt $


$ P = (4){1\over2}(2\pi+{1\over2}sin(2*2\pi) $


$ P = 4\pi $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett