(Energy)
(Energy)
Line 1: Line 1:
== Energy ==
+
== Average Power ==
 
<font size="2">
 
<font size="2">
  
Line 7: Line 7:
  
  
<math>E = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
+
<math>Avg. Power = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
  
  
<math>E = {1\over(4\pi-0)}\int_{0}^{4\pi}\!|cos(t)|^2 dt</math>
+
<math>Avg. Power = {1\over(4\pi-0)}\int_{0}^{4\pi}\!|cos(t)|^2 dt</math>
  
  
<math>E = {1\over(4\pi)}{1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt</math>
+
<math>Avg. Power = {1\over(4\pi)}{1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt</math>
  
  
<math>E = {1\over8\pi}(4\pi+{1\over2}sin(8\pi)) dt</math>
+
<math>Avg. Power = {1\over8\pi}(4\pi+{1\over2}sin(8\pi)) dt</math>
  
  
<math>E = {1\over2}</math>
+
<math>Avg. Power = {1\over2}</math>
  
 
</font>
 
</font>

Revision as of 14:12, 5 September 2008

Average Power

Consider the signal $ x(t)=cos(t) $ over the interval 0 to $ 4\pi $


$ Avg. Power = {1\over(t2-t1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $


$ Avg. Power = {1\over(4\pi-0)}\int_{0}^{4\pi}\!|cos(t)|^2 dt $


$ Avg. Power = {1\over(4\pi)}{1\over2}\int_{0}^{4\pi}\!(1+cos(2t)) dt $


$ Avg. Power = {1\over8\pi}(4\pi+{1\over2}sin(8\pi)) dt $


$ Avg. Power = {1\over2} $

Power

$ f(t)=2cos(t) $


$ P = \int_{t_1}^{t_2}\!|f(t)|^2\ dt $


$ P = \int_{0}^{2\pi}\!|2cos(t)|^2\ dt $


$ P = (4){1\over2}\int_{0}^{2\pi}\!1+cos(2t) dt $


$ P = (4){1\over2}(2\pi+{1\over2}sin(2*2\pi) $


$ P = 4\pi $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010