(New page: == Energy of y = cos(t) == y = cos(t) t1 = 0 t2 = pi)
 
(Power of a Signal)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Energy of y = cos(t) ==
+
== Energy of a Signal==
  
                    y = cos(t)
+
:<math> y = 3e^{t} </math> from (0,5)
                    t1 = 0
+
 
                    t2 = pi
+
:<math> Energy = \int_{t1}^{t2} x(t) </math>
 +
 
 +
:<math> Energy = \int_{0}^{5}3e^{t}dt </math>
 +
 
 +
:<math> Energy = 3e^{5} - 3 </math>
 +
 
 +
 
 +
== Power of a Signal ==
 +
 
 +
:<math> y = 3e^{t} </math> from (0,5)
 +
 
 +
:<math>Average Power = \frac{1}{t2 - t1}\int_{t1}^{t2}x(t)^2 </math>
 +
 
 +
 
 +
:<math>Average Power = \frac{1}{5}\int_{0}^{5}3e^{2t}dt </math>
 +
 
 +
:<math>Average Power = \frac{1}{5}(\frac{3}{2}e^{10} - \frac{3}{2}) </math>
 +
 
 +
:<math>Average Power = \frac{3}{10}e^{10} - \frac{3}{10} </math>

Latest revision as of 15:09, 4 September 2008

Energy of a Signal

$ y = 3e^{t} $ from (0,5)
$ Energy = \int_{t1}^{t2} x(t) $
$ Energy = \int_{0}^{5}3e^{t}dt $
$ Energy = 3e^{5} - 3 $


Power of a Signal

$ y = 3e^{t} $ from (0,5)
$ Average Power = \frac{1}{t2 - t1}\int_{t1}^{t2}x(t)^2 $


$ Average Power = \frac{1}{5}\int_{0}^{5}3e^{2t}dt $
$ Average Power = \frac{1}{5}(\frac{3}{2}e^{10} - \frac{3}{2}) $
$ Average Power = \frac{3}{10}e^{10} - \frac{3}{10} $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach