(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>Engergy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt </math><br><br>
+
For a continuous-time signal <br>
 +
<math>Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt ............. (1)</math><br>
 +
 
 +
Over an infinite period of time <br>
 +
<math>Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt ..........  (2)</math> <br><br>
 +
If Equation 2 converges, Energy is finite. <br>
 +
If Equation 2 diverges, Energy is infinite. <br><br>
 +
<math>P(\infty)=\lim_{T \to \infty} {\frac{E(\infty)}{2T}} = 0 ................ Finite-energy Signal</math><br>
 +
<math>P(\infty0 > 0 ................ Infinite-energy Signal</math><br>
 +
Not Periodic ..................... Neither Finite nor Infinite.<br>

Latest revision as of 21:00, 4 September 2008

For a continuous-time signal
$ Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt ............. (1) $

Over an infinite period of time
$ Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt .......... (2) $

If Equation 2 converges, Energy is finite.
If Equation 2 diverges, Energy is infinite.

$ P(\infty)=\lim_{T \to \infty} {\frac{E(\infty)}{2T}} = 0 ................ Finite-energy Signal $
$ P(\infty0 > 0 ................ Infinite-energy Signal $
Not Periodic ..................... Neither Finite nor Infinite.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang