Line 4: Line 4:
 
Over an infinite period of time <br>
 
Over an infinite period of time <br>
 
<math>Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt ..........  (2)</math> <br><br>
 
<math>Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt ..........  (2)</math> <br><br>
If the above equation converges,  
+
If Equation 2 converges, Energy is finite. <br>
<math> \lim_{x \to \infty} f(x) = L </math>
+
If Equation 2 diverges, Energy is infinite. <br><br>
 +
<math>P(\infty)=\lim_{T \to \infty} {\frac{E(\infty)}{2T}} = 0

Revision as of 20:58, 4 September 2008

For a continuous-time signal
$ Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt ............. (1) $

Over an infinite period of time
$ Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt .......... (2) $

If Equation 2 converges, Energy is finite.
If Equation 2 diverges, Energy is infinite.

$ P(\infty)=\lim_{T \to \infty} {\frac{E(\infty)}{2T}} = 0 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett