Line 1: Line 1:
 
For a continuous-time signal <br>
 
For a continuous-time signal <br>
<math>Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt </math><br>
+
<math>Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt ............. (1)</math><br>
  
 
Over an infinite period of time <br>
 
Over an infinite period of time <br>
<math>Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt</math> <br><br>
+
<math>Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt ..........  (2)</math> <br><br>
 +
If the above equation converges,
 
<math> \lim_{x \to \infty} f(x) = L </math>
 
<math> \lim_{x \to \infty} f(x) = L </math>

Revision as of 20:53, 4 September 2008

For a continuous-time signal
$ Energy = \int_{t_1}^{t_2} \! |x(t)|^2\ dt ............. (1) $

Over an infinite period of time
$ Energy(\infty) = \lim_{T \to \infty} \int_{-T}^{T} \! |x(t)|^2\ dt = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt .......... (2) $

If the above equation converges, $ \lim_{x \to \infty} f(x) = L $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett