(For a Continuous Time Signal)
 
Line 4: Line 4:
  
 
<math>E = \int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
 
<math>E = \int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
 +
 +
<math>E = \int_{t_1}^{t_2}\!|\sqrt{t}|^2\ dt</math>
 +
 +
<math>E = \int_{t_1}^{t_2}\!t\ dt</math>
 +
 +
<math>E =  \frac{1}{2}t^{2}|^{t_{2}}_{t_{1}}</math>
 +
 +
<math>E = \frac{1}{2}(t^{2}_{2}-t^{2}_{1})</math>
  
 
Average power in time interval from [<math>t_{1},t_{2} </math>]:
 
Average power in time interval from [<math>t_{1},t_{2} </math>]:
  
 
<math>P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
 
<math>P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|x(t)|^2\ dt</math>
 +
 +
<math>P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|\sqrt{t}|^2\ dt</math>
 +
 +
<math>P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!t\ dt</math>
 +
 +
<math>P_{avg} = \frac{1}{{t_2}-{t_1}}(\frac{1}{2}t^{2}|^{t_{2}}_{t_{1}})</math>
 +
 +
<math>P_{avg} = \frac{1}{{t_2}-{t_1}}(\frac{1}{2}(t^{2}_{2}-t^{2}_{1}))</math>

Latest revision as of 12:34, 5 September 2008

For a Continuous Time Signal

Energy from $ t_{1} $ to $ t_{2} $

$ E = \int_{t_1}^{t_2}\!|x(t)|^2\ dt $

$ E = \int_{t_1}^{t_2}\!|\sqrt{t}|^2\ dt $

$ E = \int_{t_1}^{t_2}\!t\ dt $

$ E = \frac{1}{2}t^{2}|^{t_{2}}_{t_{1}} $

$ E = \frac{1}{2}(t^{2}_{2}-t^{2}_{1}) $

Average power in time interval from [$ t_{1},t_{2} $]:

$ P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|x(t)|^2\ dt $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!|\sqrt{t}|^2\ dt $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}\int_{t_1}^{t_2}\!t\ dt $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}(\frac{1}{2}t^{2}|^{t_{2}}_{t_{1}}) $

$ P_{avg} = \frac{1}{{t_2}-{t_1}}(\frac{1}{2}(t^{2}_{2}-t^{2}_{1})) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva