Line 29: Line 29:
  
 
<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T dt</math>
 
<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T dt</math>
 +
 +
<math>P_\infty = \lim_{T \to \infty} \frac{1}{2T} t|_{-\infty}^\infty</math>

Revision as of 22:06, 4 September 2008

Signal

$ x(t) = e^{jt} $

Energy

$ E_\infty = \int_{-\infty}^\infty |x(t)|^2dt $

$ = \int_{-\infty}^\infty |e^{jt}|^2dt $

$ = \int_{-\infty}^\infty |cos(t) + jsin(t)|^2dt $ (Euler's Formula)

$ = \int_{-\infty}^\infty {\sqrt{cos^2(t) + sin^2(t)}}^2dt $ (Magnitude of a Complex Number)

$ = \int_{-\infty}^\infty dt $

$ = t|_{-\infty}^\infty $

$ = \infty - (-\infty) $

$ = \infty $

Power

$ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T |x(t)|^2dt $

$ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T |e^{jt}|^2dt $

$ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T |cos(t) + jsin(t)|^2dt $ (Euler's Formula)

$ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T {\sqrt{cos^2(t) + sin^2(t)}}^2dt $ (Magnitude of a Complex Number)

$ P_\infty = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T dt $

$ P_\infty = \lim_{T \to \infty} \frac{1}{2T} t|_{-\infty}^\infty $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett