(Energy)
 
(17 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Signal ==
 
== Signal ==
 
<font size="4">
 
<font size="4">
<math>y(t)=exp(t)</math>
+
<math>f(t)=2cos(t)</math>
 
</font>
 
</font>
  
== Power ==
+
==Energy==
 +
 
 +
According to formula of Energy of a singal,we can get:
 
<font size="4">
 
<font size="4">
<math>P = \int_{t_1}^{t_2} \! |y(t)|^2\ dt</math>
 
  
 +
<math>E = \int_{t_1}^{t_2} \! |f(t)|^2\ dt</math>
 +
 +
<math>=\int_0^{2\pi}{|2cos(t)|^2dt}</math>
 +
 +
<math>=\int_0^{2\pi}{(2(2cos(t)^2-1)+2)dt}</math>
 +
 +
<math>=\int_0^{2\pi}{2+cos(2t))dt}</math>
 +
 +
<math>=(2t+sin(2t))|_{t=0}^{t=2\pi}</math>
 +
 +
<math>=4\pi+0-0-0</math>
 +
 +
<math>=4\pi</math>
 +
</font>
 +
 +
==Power==
 +
 +
According to formula of Power of a singal,we can get:
 +
<font size="4">
 +
 +
<math>P=\frac{1}{2T}\int_{-T}^{T}\!|f(t)|^2\ dt</math>
 +
 +
<math>=\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{|2cos(t)|^2dt}</math>
 +
 +
<math>=\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{(2(2cos(t)^2-1)+2)dt}</math>
  
<math>P = \int_0^2 \! |e^(2t)\ dt</math>
+
<math>=\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{(2+cos(2t))dt}</math>
  
 +
<math>=\frac{1}{4\pi}(2t+sin(2t))|_{t={-2\pi}}^{t=2\pi}</math>
  
<math>P = \int_0^2 \! exp(2t) dt</math>     (since exp(t) cannot be negative,take off the absolute value sign)
+
<math>=\frac{1}{4\pi}(4\pi+0-(-4\pi)-0)</math>
  
 +
<math>=\frac{1}{4\pi}(8\pi)</math>
  
<math>P = {1\over 2} ( exp(2t) )\mid_0^{2}</math>
+
<math>=2</math>
  
  
<math>P = {1\over 2}(exp(4) - 1)}</math>
 
 
</font>
 
</font>

Latest revision as of 16:01, 3 September 2008

Signal

$ f(t)=2cos(t) $

Energy

According to formula of Energy of a singal,we can get:

$ E = \int_{t_1}^{t_2} \! |f(t)|^2\ dt $

$ =\int_0^{2\pi}{|2cos(t)|^2dt} $

$ =\int_0^{2\pi}{(2(2cos(t)^2-1)+2)dt} $

$ =\int_0^{2\pi}{2+cos(2t))dt} $

$ =(2t+sin(2t))|_{t=0}^{t=2\pi} $

$ =4\pi+0-0-0 $

$ =4\pi $

Power

According to formula of Power of a singal,we can get:

$ P=\frac{1}{2T}\int_{-T}^{T}\!|f(t)|^2\ dt $

$ =\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{|2cos(t)|^2dt} $

$ =\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{(2(2cos(t)^2-1)+2)dt} $

$ =\frac{1}{4\pi}\int_{-2\pi}^{2\pi}{(2+cos(2t))dt} $

$ =\frac{1}{4\pi}(2t+sin(2t))|_{t={-2\pi}}^{t=2\pi} $

$ =\frac{1}{4\pi}(4\pi+0-(-4\pi)-0) $

$ =\frac{1}{4\pi}(8\pi) $

$ =2 $


Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett