Line 1: Line 1:
 
Compute the Energy and Power of the signal <math>x(t)=\dfrac{2t}{t^2+5}</math> between 3 and 5 seconds.
 
Compute the Energy and Power of the signal <math>x(t)=\dfrac{2t}{t^2+5}</math> between 3 and 5 seconds.
 
==Energy==
 
==Energy==
 +
 +
<math>E=\int_{t_1}^{t_2}x(t)dt
  
 
<math>E=\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
 
<math>E=\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
Line 23: Line 25:
  
 
==Power==
 
==Power==
 +
 +
<math>P=\dfrac_{1}^{{t_2}-{t_1}}\int_{t_1}^{t_2}x(t)dt
 +
  
 
<math>P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>
 
<math>P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt}</math>

Revision as of 14:35, 4 September 2008

Compute the Energy and Power of the signal $ x(t)=\dfrac{2t}{t^2+5} $ between 3 and 5 seconds.

Energy

$ E=\int_{t_1}^{t_2}x(t)dt <math>E=\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(3)=3^2+5=9+5=14 $

$ U(5)=5^2+5=25+5=30 $

$ E=\int_{14}^{30}\dfrac{du}{U} $

$ E=\ln U |_{U=14}^{U=30} $

$ E=\ln 30 - \ln 14 $

$ E=\ln {30/14} $

Power

$ P=\dfrac_{1}^{{t_2}-{t_1}}\int_{t_1}^{t_2}x(t)dt <math>P=\dfrac{1}{5-3}\int_3^{5}{\dfrac{2t}{t^2+5}dt} $

$ U=t^2+5 $

$ dU=2tdt $

Limits:

$ U(3)=3^2+5=9+5=14 $

$ U(5)=5^2+5=25+5=30 $

$ P=\int_{14}^{30}\dfrac{du}{U} $

$ P=\ln U |_{U=14}^{U=30} $

$ P=\ln 30 - \ln 14 $

$ P=\ln {30/14} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva