Revision as of 17:25, 4 September 2008 by Thomas34 (Talk)

Problem

Given complex signal $ f(t)=e^{jt} = \cos(t) + j \sin(t) $, find $ E_\infty $ and $ P_\infty $.

Background Knowledge

$ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt $

$ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) $

Solution

  • $ |x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1 $
  • $ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty 1\,dt = t|_{-\infty}^{\infty} = \infty $
  • $ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) = \lim_{T \to \infty} (\frac{1}{2T} t|_{-T}^T) $

$ = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood