(working...)
 
(done!)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Given complex signal <math>f(t)=e^{jt} = cos(t) + j sin(t)</math>, find <math>E_\infty</math> and <math>P_\infty</math>.
+
Given complex signal <math>f(t)=e^{jt} = \cos(t) + j \sin(t)</math>, find <math>E_\infty</math> and <math>P_\infty</math>.
  
 
==Background Knowledge==
 
==Background Knowledge==
<math>E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt.</math>
+
<math>E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt</math>
  
<math>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |x(t)|^2\,dt.</math>
+
<math>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |x(t)|^2\,dt)</math>
 +
 
 +
==Solution==
 +
*<math>|x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1</math>
 +
 
 +
*<math>E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty 1\,dt = t|_{-\infty}^{\infty} = \infty</math>
 +
 
 +
*<math>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |x(t)|^2\,dt) = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T 1,dt) = \lim_{T \to \infty} (\frac{1}{2T}  t|_{-T}^T)</math>
 +
 
 +
<math> = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 </math>

Revision as of 17:23, 4 September 2008

Problem

Given complex signal $ f(t)=e^{jt} = \cos(t) + j \sin(t) $, find $ E_\infty $ and $ P_\infty $.

Background Knowledge

$ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt $

$ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) $

Solution

  • $ |x(t)| = |\cos(t) + j \sin(t)| = \sqrt{(\cos(t))^2+(\sin(t))^2} = \sqrt{1} = 1 $
  • $ E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt = \int_{-\infty}^\infty 1\,dt = t|_{-\infty}^{\infty} = \infty $
  • $ P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1,dt) = \lim_{T \to \infty} (\frac{1}{2T} t|_{-T}^T) $

$ = \lim_{T \to \infty} (\frac{1}{2T} (2T)) = \lim_{T \to \infty} (1) = 1 $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach